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Abstract. In regions susceptible to river freezing and flooding, river ice detection is a priority. Localization of 
ice jams and ice drift zones could mean a faster and better response to possible flooding areas, and classifica-
tion of river ice could help better predict freezing and thawing conditions that hinder the use of commercial 
and recreational river transport. As many freezing-prone rivers are located in regions with short winter days 
and common cloud cover, the use of optical sensors can be very limited, therefore, the use of Synthetic Aper-
ture Radar (SAR) – a microwave imaging radar – is more applicable. In this article, Sentinel-1 SAR C-band 
imagery is used to create derivate texture rasters, which are analyzed, compared with known optical imagery 
and then considered for river ice detection and discrimination. These results are compared in terms of their 
effectiveness for river ice discrimination, and the most useful methods are selected. The chosen methods are 
then compared in an experimental machine-learning model capable of detecting and classifying ice and water. 
Various machine-learning approaches (both classical and deep-learning) are considered and compared, and the 
best models are selected. The purpose of this research is to analyze the capability of texture rasters, calculated 
from a gray-level co-occurrence matrix (GLCM), to discriminate river ice. Texture rasters have recently been 
applied for river ice classification by de Roda Husman et al. (de Roda Husman et al. 2021), but included only 
three metrics. This research aims to expand on this knowledge by comparing eight metrics instead of three, as 
well as including an experiment with a deep-learning model. The results demonstrate that in machine-learning 
experiments, only one texture measure out of eight (GLCM Mean calculation) is able to discriminate river ice 
better than discrimination from a standard SAR backscatter intensity image (the baseline).
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INTRODUCTION

Countries in colder regions of the world regularly 
deal with a serious problem that restricts water ac-
tivities in winter, i.e. river freeze-up. In Europe, there 
exist a vast number of wide rivers that could be com-
mercially utilized for river transport, but seasonal riv-

er freeze-up hinders their exploitation. Modern SAR 
(Synthetic Aperture Radar) satellites can monitor the 
Earth in any weather or daylight conditions, and if 
they were used for river ice research, information on 
regularly fed river ice condition could allow us to ac-
celerate response to a changing situation and monitor 
areas where ice is building up or thawing.
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surface roughness and the dielectric properties of ice 
(Carsey 1992). Sharp, protruding and variously orien-
tated (“rough”) areas of ice jams generate and reflect 
more and return a strong, bright signal, while areas 
covered with young, smooth ice can look nearly iden-
tical to open water, as signals pass through the ice and 
generate a weak response reflected from the ice-water 
interface, or plainly reflect less microwave radiation 
in the general direction of the radar. Open water itself 
has a very weak microwave response, primarily stem-
ming from its low roughness, and therefore appears 
very dark in a SAR image. However, wave action 
on the water surface increases the roughness and can 
contribute to a stronger return signal (Gulácsi, Ko-
vács 2020). Besides, thawing conditions mean more 
liquid water on the snow cover and ice surface, and 
since backscatter intensity depends on the dielectric 
constant, the response also becomes weaker (Hal-
likainen, Winebrenner 1992; Le Toan 2007).

Imagery analysis

Due to the similarity of backscatter intensity be-
tween some ice types and water, pure visual analysis 
of bands is not sufficient. However, as some research-
ers point out, no ice cover is perfectly smooth and a 
stronger signal response can be detected from cracks or 
at the ice-water interface. Such patterns could be found 
using texture analysis, for example, by creating a gray-
level co-occurrence matrix from the input band and 
calculating Haralick features (Haralick et al.  1973). 
Some studies have already attempted to use this meth-
od and found favourable results (de Roda Husman et 
al. 2021). Moreover, other studies have tried using 
polarimetric decomposition to discriminate between 
surface and volume scatters, albeit they involved sea-
ice and more versatile quad-polarized data (Scheuchl 
et al. 2021; Shokr, Dabboor 2020). Furthermore, sum-
mer (open-water) data has been found to be useful as a 
comparison tool for mapping sea-ice cover (Winsvold 
et al. 2018). However, the aforementioned study of 
river ice classification using Haralick features (de Roda 
Husman et al. 2021) only used three texture measures. 
This research attempts to expand on this knowledge 
by including more comparable Haralick features. Be-
sides, this approach to river ice classification is novel 
to the region in question, as similar studies have not yet 
been done in Lithuania. The only study of Sentinel-1 
dual-polarization data usage for river ice classification 
in the surrounding region was conducted by Łoś and 
Pawłowski in 2017 (Los, Pawlowski 2017).

Machine learning

The full potential of any ice discrimination study 
can only be unlocked by feeding the data into a ma-

While the use of SAR seems straightforward, such 
methods bring new problems. Microwave imaging is 
sensitive to surface roughness and characteristics, and 
some frozen areas can look nearly identical to open 
water. Moreover, both ice and water features carry a 
lot of additional spectral information that needs to be 
identified and, if possible, used in classification.

The goal of this experiment is to evaluate the use of 
SAR for discrimination of water and ice in rivers. The 
tasks of this experiment are three-fold: 1) to analyze 
uncertainty in microwave backscatter that appears in 
certain ice zones, by finding a textural measure that 
would eliminate it; 2) to evaluate the discrimination 
of ice and open water by using texture analysis; and 
3) to demonstrate automatic ice and water discrimina-
tion by using machine learning models.

LITERATURE REVIEW

Synthetic Aperture Radar

During winter season, remote sensing in north-
eastern Europe is limited due to a constant cloud cov-
er and short daylight hours. Traditional optical and 
infrared sensors cannot penetrate a thick cloud cover 
or work under low levels of daylight, which severely 
limits their potential for most monitoring tasks. In-
stead, a more useful solution is to use the Synthetic 
Aperture Radar (SAR). First described and tested in 
the 1950s (Sherwin et al. 1962), SAR works by mov-
ing a conventional microwave imaging radar along a 
platform, simulating a much larger aperture. Because 
of radar resolution being directly proportional to the 
ratio of wave length and antenna size (Fraceschetti, 
Lanari 1999), the radar can produce a higher-resolu-
tion image of the surface (Moreira et al. 2013). The 
active nature of SAR and the ability of microwave 
radiation to pass through a cloud cover allow constant 
observation of phenomena in areas otherwise impen-
etrable by visible-light and infrared sensors.

SAR imagery and ice discrimination

Contrary to traditional sensors, SAR imagery is 
not easily interpretable. Instead of collecting visible 
light or infrared radiation emitted or reflected from 
ground objects, SAR itself sends microwave radia-
tion, what is called “active sensing”, and registers the 
return signal (backscatter) scattered back from the 
ground (Chen 2016). Even after extensive product 
pre-processing, the end result is only a microwave 
echo of the surface. Therefore, interpreting a SAR 
product requires understanding how different surfac-
es and ground objects reflect microwave radiation.

For ice detection, the backscatter signal intensity 
depends on many factors, most important of which are 
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chine learning model for automated classification. 
The amount of collected data and the size of areas of 
interest are large; therefore, modern automated classi-
fication solutions would be beneficial in detecting ice, 
discriminating between ice types or, at the very least, 
segmenting surface types for manual labelling. Tra-
ditional machine learning methods, such as Support 
Vector Machine (SVM) (Boser et al. 1992), Random 
Forest or k-means clustering (MacQueen 1967) have 
been used for similar classification tasks before (Chu, 
Lindenschmidt 2016; de Roda Husman et al. 2021; 
Sobiech, Dierking 2013; Weber et al. 2003) and their 
usefulness can be tested. Yet another interest is in 
determining the effectiveness of novel deep-learning 
methods that use context-aware operations such as 
convolution (Yamashita et al. 2018) to successfully 
analyze complex imagery. Modern deep learning ar-
chitectures such as PSPNet (Zhao et al. 2016) and 
UNet (Ronneberger et al. 2015) have been demon-
strated to successfully segment imagery, and some 
studies have already attempted to use them for remote 
sensing tasks (Singh et al. 2019). The use of deep-
learning technology for classification using Haralick 
features is a novel approach to this problem.

METHODOLOGY

Study area

To assess the usefulness of river ice detection in 
Lithuania, we have chosen the Nemunas River as a 
study area. During the selection of imagery, the en-
tire length of the river in Lithuania was taken into 
account, excluding the Kaunas Reservoir, where 
Nemunas is dammed by the Kaunas Hydroelectric 
Power Plant and lake ice phenomena can be observed 
(see Fig. 1).

After visual analysis of both SAR and optical im-
agery, more specific regions of interest were later se-
lected and extracted from the original extent.

Imagery

The Sentinel-1 imagery library as available through 
Alaska Satellite Facility’s Vortex database (National 
Aeronautics and Space Administration 2022) was 
analyzed. In total, from 2014 to 2021, 96 rasters were 
found where the Nemunas was frozen in at least one 
area. The winter season of 2019–2020 was excluded 

Fig. 1 Map of the study area, with parts of the Nemunas River used in the study marked in red

Table 1 Selected SAR imagery with overlapping optical data

# Sentinel 
Mission

Orbit Num-
ber Product ID SAR Sensing Time (Lo-

cal) Optical Imagery Sensor Optical Sensing Time 
(Local)

1. S1A 3878 7BD0 25.12.2014 18:11 Landsat 8 25.12.2014 09:25
2. S1A 9573 A9F5 20.01.2016 06:51 Landsat 8 20.01.2016 09:31
3. S1A 15275 609D 14.02.2017 06:43 Sentinel-2 L1C 14.02.2017 11:41
4. S1A 26001 3D33 19.02.2019 18:20 Sentinel-2 L1C 19.02.2019 11:40
5. S1B 25729 428A 23.02.2021 06:43 Sentinel-2 L1C 23.02.2021 11:40



4

due to abnormally high temperatures and no river ice 
cover (Lithuania Hydrometeorological Service 2020). 
All SAR images were captured in the Interferometric 
Wide Swath mode, with VV/VH polarizations, and 
downloaded in the GRD-HD mode. Both ascending 
and descending orbits were used, as the features in 
question have a small height difference (very rough 
ice jam conditions would contribute to the largest 
height difference).

In order to define ice cover conditions, optical 
imagery was used by downloading it from Creodias 
(CloudFerro 2022). For any sensing day of any SAR 
image of interest, supplementary Sentinel-2 or Land-
sat 8 imagery with no cloud cover over the river is 
needed, and only 5 SAR images were found to have 
overlapping optical imagery with good atmospheric 
conditions (see Table 1).

The optical sensing time for rasters where river 
freeze-up conditions were abundant (#3 and #5) was 
roughly 5 hours after SAR sensing time, which pro-
vided sufficiently similar results and easily distin-
guishable ice forms. The #1 and #4 rasters had ~7 
hours of sensor time difference, which provided less 
precise comparisons but nevertheless was sufficient 
to assess the general state of river freeze-up. In ad-
dition, Landsat 8 optical imagery has a much lower 
spatial resolution than Sentinel-2 and was therefore 
also used only for the general assessment of river 
conditions.

Each SAR product was pre-processed in ESA 
SNAP software in this sequence:

•	 Orbit File Application
•	 Thermal Noise Removal
•	 Calibration with sigma band output
•	 Terrain Correction
•	 Scale Conversion from Linear Units to dB 

(decibels)
Speckle Filtering was omitted due to resulting loss 

of image texture information and spatial detail (Filip-
poni 2019).

For each image pair, the entire length of the river 
was visually assessed and regions of interest were 
selected. The regions were selected based on the ex-
istence of clearly visible ice conditions (complete 
freeze-up, ice jams and gaps of open water), as well 
as in frozen areas where SAR imagery looked visually 
similar to water (i.e., problematic regions of young/
thermal ice) (see Figs 2–9).

Haralick feature calculation

Polarization intensity images are useful for the 
classification of such phenomena as ice jams or rug-
ged ice areas, as these “bright” regions are easily sep-
arable from a low-intensity “dark” response of open 
water. However, young flat-surfaced thermal ice, as 

Fig. 2 Clearly identifiable ice cover in Sentinel-2

Fig. 3 Clearly identifiable ice cover in corresponding VV 
SAR imagery

Fig. 4 Rough ice cover (ice jam locations) visible in Sen-
tinel-2

Fig. 5 Rough ice cover (ice jam locations) is visible in cor-
responding VV SAR imagery as brighter zones

well as high amounts of meltwater over the ice surface 
create a backscatter response that is visually similar 
to that of open water (Schwaizer 2017). Therefore, 
backscatter intensity alone is insufficient. A method 
proposed by Gauthier et al. (Gauthier et al. 2006) and 
successfully applied for river ice classification by de 
Roda Husman et al. (de Roda Husman et al. 2021) is 
the use of image texture information.

The method used in this study is the calculation of 
gray level co-occurrence matrix (GLCM) – a matrix 
of image pixel value pair counts (The Mathworks Inc. 
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Fig. 6 Water with possible frazil ice cover in Sentinel-2

Fig. 7 Water with possible frazil ice cover is visible in VV 
SAR imagery

Fig. 8 Clearly visible ice cover in Sentinel-2

Fig. 9 Ambiguously visible ice cover in VV SAR imagery, 
where certain ice zones appear much darker. Ice cracks are 
visible and could be a visual indicator of ice cover

2022) and the subsequent use of the matrix for the 
calculation of statistical metrics, also known as Har-
alick features (Haralick et al. 1973).

For this study, the Orfeo Toolbox plugin for QGIS 
was used to calculate the features (Centre national 
d’études spatiales 2021). The following parameters 
were used:

•	 Computation step: 2
•	 X/Y Radius: 5
•	 X/Y Offset: 3
•	 Histogram bins: 12
To compare separate images, common minimum 

and maximum image values must be defined, taking 
into account all individual rasters that will be used 
in subsequent calculations. For VH polarization im-
agery, the maximum value is 21 dB (decibels) and the 
minimum is -68 dB; for VV polarization imagery, the 
maximum value is 35 dB and the minimum is -62 dB. 
These values were chosen as the common minimum 
and maximum.

The QGIS plugin allows for the calculation of 29 
features in total, but only 8 were chosen for this study 
as not all are comparable.

The QGIS OTB plugin uses a variant of the 
GLCM, called the GLCIL (Grey Level Co-occurrence 
Indexed List), which applies an indexing method to 
the GLCM to improve the speed of the calculations. 
The resulting features are still Haralick features, but 
the approach is more fitting to a computationally de-
manding task such as the one in this study (Clausi, 
Jernigan 1998).

The QGIS OTB plugin uses the following formu-
las to calculate the selected Haralick features from the 
GLCM:

μ – weighted pixel mean
σ – weighted pixel variance
g (i, j) – frequency of the pixel pair
i, j – pixel pair indices

	 GLCM energy = ∑i,j g(i, j)2	 (1)

•	 Equation 1. Energy: describes texture uniform-
ity. Higher values correspond to a more uni-
form texture, while lower values correspond to 
a more varied texture (OTB Team 2018).
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	 GLCM entropy = –∑(i, j)g(i,j)log2g(i,j)

	 or 0, if g(i, j) = 0	
2

•	 Equation 2. Entropy: describes texture ran-
domness. Higher values correspond to a more 
chaotic texture, while lower values correspond 
to a more orderly texture (OTB Team 2018).

	
GLCM correlation = ∑i, j 

(i – μ)(j – μ)g(i,j)
σ2 	 (3)

•	 Equation 3. Correlation: describes the correla-
tion of a pixel with its neighbourhood. Higher 
values correspond to a higher correlation, while 
lower values correspond to a lower correlation 
(OTB Team 2018).

	 GLCM IDM = ∑i, j 
1

1 + (i – j)2  g(i, j) 	 (4)

•	 Equation 4. Inverse difference moment (IDM): 
describes texture homogeneity. Higher values 
correspond to a lower pixel-to-pixel contrast in 
the neighbourhood, while lower values corre-
spond to a higher pixel-to-pixel contrast in the 
neighbourhood (OTB Team 2018).

	 GLCM mean = ∑(i, j)ig(i,j)	 (5)

•	 Equation 5. Mean: describes the mean pixel-
pair occurrence in the neighbourhood (OTB 
Team 2018).

	 GLCM variance = ∑(i, j)(i – μ)2g(i, j)	 (6)

•	 Equation 6. Variance: describes the pixel-pair 
occurrence dispersion in the neighbourhood 
(OTB Team 2018).

	 GLCM Variance of Diff. = var (gx–y(i))	 (7)

•	 Equation 7. Variance of Differences: x, y – gray 
levels, describes the variance of gray level dif-
ferences in the matrix (OTB Team 2018).

	 GLCM Entropy of Diff. = –∑i gx – y(i)log(gx–y(i))	 (8)

•	 Equation 8. Entropy of Differences: x, y – gray 
levels, describes the entropy of gray level dif-
ferences in the matrix (OTB Team 2018).

Several regions of interest were selected from the 
optical-SAR image pairs that included open water 
zones, rough ice cover, smooth ice cover and prob-
lematic areas (areas with hard-to-distinguish classes 
in intensity images). For each of these regions, tex-
ture calculation was done using the aforementioned 
Calculate Haralick Textures tool with the described 
parameters. The selected common minimum and 
maximum values make sure that the resulting texture 
metrics are comparable. An example of the visual ap-
pearance of the texture metrics is presented below 
(see Figs 10–12).

Fig. 10 Backscatter intensity raster in VV

Fig. 11 GLCM Mean texture raster derived from VV

Fig. 12 GLCM Variance texture raster derived from VV

Feature analysis

To determine the usefulness and applicability of 
various texture metrics, several zones were selected 
from the regions of interest, with each zone cover-
ing the exact boundaries of one feature of interest, 
based on its extent in the texture metric image (see 
Table 2). For each feature zone of each texture met-
ric, the mean and the values at one standard deviation 
from the mean were calculated.

Table 2 Analysis zones
Analysis Zones Zone Description

W1, W2, W3 Open water area
C1, C2 Ice-covered area with visible cracks
I1, I2, I3, I4, I5, I6 Ice-covered area
J1, J2 Ice-covered area with a very rough ice cover 

(ice jam)
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The calculated zones are then compared with each 
other. The goal is to determine which of the metrics 
have the lowest amount of value overlap within 1 
standard deviation range between water and ice fea-
tures. A tally calculation is used to count:

•	 how many ice zones (out of 10 possible) over-
lap in their standard deviation value ranges 
with at least one water zone. Such overlaps 
show that water and ice are not perfectly sepa-
rable and problems might occur in determining 
the class of an area from the values;

•	 how many ice zones (out of 10 possible) have 
their value medians within the standard devia-
tion value range of the water zone. This shows 
probable critical overlap of values and could 
cause significant separability problems.

These two tally counts allow for a quick, non-vis-
ual evaluation of the metrics. At the end of this part 
of the analysis, the most separable metrics are deter-
mined, which will be later used in machine learning.

Machine learning

After the evaluation and selection of viable texture 
metrics, the metrics are used as single-band rasters in 
machine learning. In order to gather more samples for 
machine learning models, a new merged raster was 
created from extracted subsets of other rasters, so that 
various classes and ice conditions could be present in 
the training image.
Two classes were defined for machine learning: water 
(only open-water areas, including problematic areas 
that appeared visually ambiguous but were manually 
confirmed to be water) and ice (only ice-covered areas, 
including areas of rough ice, smooth ice and other ice 
types). For each class, around 30–50 samples were 
taken from various rasters. Sample classes were equal 
by total sample area.

Three machine learning models were chosen for 
this task – Support Vector Machine (SVM), Random 
Trees, and k Nearest Neighbour. These models were 
chosen due to their prevalence in modern remote 
sensing/GIS software and overall popularity as seg-
mentation methods. However, it would be imprudent 
to claim that these models are the best for this par-
ticular task, and a more in-depth study comparing a 
larger selection of machine learning models in this 
task would be beneficial. Each model was trained on 
the class samples, and the model was then applied on 
a raster that included areas of rough and smooth ice, 
as well as ice jams and open water areas. The inferred 
result is a two-class raster. The test raster is also man-
ually classified into two classes based on visual anal-
ysis and, more importantly, comparison with overlap-

ping optical data. The parameters of these models are 
provided below (see Tables 3–5).

The inference result and the manually-classified 
ground truth are then compared to assess model accu-
racy. The evaluation is performed by randomly sam-
pling accuracy assessment points from the ground 
truth and matching them with the inference result. 
A confusion matrix is then calculated from the as-
sessment points, and three measures of accuracy are 
calculated – User’s Accuracy, Producer’s Accuracy, 
and Kappa index (ESRI 2022). User’s Accuracy 
measures the accuracy based on false positives, while 
Producer’s Accuracy measures the accuracy based 
on false negatives. Kappa index computes the overall 
accuracy of the model based on model accuracy and 
calculated random accuracy, derived from class clas-
sification probabilities (ENVI  2019). Kappa ranges 
from -1 to 1. According to the interpretation proposed 
by Mary L. McHugh, a Kappa value of 1.0 would be 
considered a perfectly accurate score, while negative 
values indicate that the accuracy is performing below 
the random accuracy achieved by random guessing. 
Kappa values below 0.60 are to be considered unre-
liable (low accuracy), values in the 0.60–0.79 range 
are of moderate accuracy, and values in the 0.80–0.90 
range are of strong accuracy (McHugh 2012).

Besides traditional machine learning methods, a 
more advanced deep learning model was tested. For 
this experiment, the Pyramid Scene Parsing Network 
(PSPNet) was developed by Zhao, Shi et al. 2016 
(Zhao et al. 2016). This model uses a convolutional 
neural network to extract a feature layer and applies 
the pooling of different sizes, each being of higher 

Table 3 Parameters used for the k-NN model
Parameters of the k-Nearest Neighbour model  

(non-segmented raster as input)
Number of Classes 2
Max Number of Samples per Class 1000 (default)
K-Nearest Neighbours 1 (default)

Table 4 Parameters used for the RT model
Parameters of the Random Trees model  

(non-segmented raster as input)
Maximum Number of Trees 50
Maximum Depth of Tree 30
Max Number of Samples per Class 1000

Table 5 Parameters used for the SVM model
Parameters of the Support Vector Machine model

Maximum Number 
of Samples per Class 500

SVM Type C-Support Vector Classification (c-svc)
Kernel Type Radial basis function (rbf)
Gamma 0.5
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resolution (higher bin size) and therefore capable of 
capturing more fine detail. After additional process-
ing, all these separate pooling features are concate-
nated with the original convolution feature layer to 
form a single feature that is once again convoluted. 
The novelty of this method is the inclusion of pooling 
at varied sizes (hence the “pyramid”), which allows 
the model to capture context information at various 
levels (Zhao et al. 2016). In some cases, PSPNet has 
demonstrated a better capability to segment the im-
age with fine spatial detail and small features (Zhao et 
al.  2016) than UNet or other methods and was there-
fore chosen for this study; however, future analysis of 
river ice segmentation with a comparison of various 
deep learning models would be beneficial in determin-
ing the most fitting model. For the parameters used 
with the PSPNet Classifier, see below (Table 6).

To train the model, a fully classified river raster 
was used. The model was then fitted for 100 epochs, 
and the resulting model metrics were analyzed.

For the deep learning model evaluation, preci-
sion, recall and F1 were used for assessment (Equa
tions 9–11).

	 precision = true positives
true positives + false positives 	 (9)

	 recall = true positives
true positives + false negatives 	 (10)

	 F1 = 2 * 
precision * recall
precision + recall 	 (11)

RESULTS

Feature analysis results

The charts below show the median value and the 
values at one standard deviation (σ) from the mean for 
each analysis zone of each calculated Haralick fea-
ture, as well as both polarization intensity images in 
dB units. Because backscatter intensity is the base for 
other texture calculations, the separability of classes 
(or lack thereof) present in the intensity image is no-
tably echoed in its derivative textural calculations.

The analysis (see Table 7, Figs S1–S19) confirms 
that VH polarization is much worse in separating wa-
ter from ice than VV polarization – all but three of 
VH metrics were fully overlapping. The best metric 
in VH polarization was GLCM Mean, but even it had 
7 overlapping zones out of 10, as well as 7 ice zone 
medians within water σ range.

VV polarization, as expected, returned better re-
sults. However, only one metric (GLCM Mean) was 
better than the baseline backscatter intensity. How-
ever, it returned favourable results – only 1 σ range 
overlap and no medians within water σ range.

Table 6 Parameters used for the PSPNet Classifier
Parameters of the PSPNet Classifier

Backbone CNN Model resnet50
Pyramid Sizes 1, 2, 3, 6
Epochs 100

Learning Rate
Automatically deduced from the 

Learning Rate Finder
(Fastai 2022)

Table 7 Texture metric separation analysis

Metric
σ range overlap 
(overlapping ice 

zones/10)

Ice median in water 
σ range (problem-
atic ice zones/10)

VH Correlation 10 10
VH Entropy of 
Differences 10 10

VH Variance of 
Differences 10 10

VH Energy 10 10
VH Entropy 10 10
VH IDM 10 10
VH Backscatter 
Intensity 8 7

VH Mean 7 7
VH Variance 10 6
VV Correlation 10 10
VV Entropy of 
Differences 8 5

VV Variance of 
Differences 8 5

VV Energy 7 5
VV Entropy 8 5
VV IDM 7 4
VV Backscatter 
Intensity 3 1

VV Mean 1 0
VV Variance 8 5

In order to more fully assess the textural metrics, 
the following metrics were chosen for tests using ma-
chine learning methods: VV Energy, VV IDM, VV 
Backscatter Intensity, VV Mean.

Machine learning results

Backscatter intensity accuracies were of rath-
er weak accuracy, with the highest Kappa values 
achieved using SVM (Kappa value of 0.5876). The 
results from this test will be used as a baseline to de-
termine whether the texture measures perform better 
or worse than pure backscatter image classification 
(see Table 8).

Machine learning tests demonstrate that both IDM 
and Energy metrics cannot classify the image correct-
ly and their Kappa index is close to random, while 
that of SVM test of GLCM IDM is at -0.0988 – a very 
low result as well (see Tables 9–10).

The baseline test of backscatter intensity dem-
onstrates that only GLCM Mean could surpass the 
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Fig. 13 GLCM Mean + Intensity image Fig. 14 GLCM Mean SVM result. Blue – water; gray – ice

Table 8 VV Backscatter Intensity results
VV Backscatter Intensity
k – Nearest Neighbours

User’s Accuracy, % Producer’s Accuracy, %
Water 85.45 66.43
Ice 65.83 85.12
Kappa 0.4979

VV Backscatter Intensity
Random Trees

User’s Accuracy, % Producer’s Accuracy, %
Water 82.03 74.20
Ice 69.83 78.60
Kappa 0.5202

VV Backscatter Intensity
Support Vector Machine (SVM)

User’s Accuracy, % Producer’s Accuracy, %
Water 92.79 68.20
Ice 68.97 93.02
Kappa 0.5876

Table 9 VV GLCM Energy results
VV Energy

k – Nearest Neighbours
User’s Accuracy, % Producer’s Accuracy, %

Water 59.31 60.78
Ice 46.63 45.12
Kappa 0.0592

VV Energy
Random Trees

User’s Accuracy, % Producer’s Accuracy, %
Water 57.44 68.20
Ice 44.44 33.49
Kappa 0.0174

VV Energy
Support Vector Machine (SVM)

User’s Accuracy, % Producer’s Accuracy, %
Water 58.15 73.14
Ice 46.48 30.80
Kappa 0.0401

baseline Kappa score. The highest Kappa value was 
achieved with the k-Nearest Neighbours method  – 
0.7167, which is of moderate accuracy. The results 
also show that the model had a higher user accuracy 
for water and a higher producer accuracy for ice. This 
shows that models were less likely to attribute a pixel 
to water if it was ice, but more likely to falsely clas-
sify water as ice. This means that the models were 
less confident about classifying pixels as water (see 
Fig. 14, Table 11).

It is not clear from the results which of the three 
machine learning solutions is best  – it varies from 
metric to metric. However, the GLCM Mean  – the 
most accurate metric – was most accurately inferred 
using k-Nearest Neighbours (k-NN).

To additionally understand the effect that metrics 
have on classification, a composite raster was cre-
ated with all 18 metrics, including both backscatter 
intensities. The results were better than the baseline, 
but worse than using GLCM Mean itself. The higher-
than-baseline Kappa values might be because of the 
effect that more accurate metrics, such as VV Mean 
and VV backscatter, have on the overall classification 
(see Table 12).

An additional raster was created using only two 
most-promising rasters – GLCM Mean and VV back-
scatter (see Fig. 13). The returned results show that 
only Random Trees managed to return a better Ka-
ppa score than the corresponding Kappa scores from 
other metrics tested separately. Even so, the returned 
Kappa score was still of moderate accuracy (see Ta-
ble 13).

Overall, it can be concluded that VV GLCM Mean 
returns a better classification result than standard VV 
backscatter, but significant classification difficulties 
persist and prevent more accurate inference because 
even in the best-case configurations, Kappa score is 
in the 0.70–0.74 range.
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Table 10 VV GLCM IDM results
VVIDM

k – Nearest Neighbours
User’s Accuracy, % Producer’s Accuracy, %

Water 59.57 68.20
Ice 48.28 39.07

Kappa 0.0744
VVIDM

Random Trees
User’s Accuracy, % Producer’s Accuracy, %

Water 61.85 54.42
Ice 48.19 55.81

Kappa 0.1004
VVIDM

Support Vector Machine (SVM)
User’s Accuracy, % Producer’s Accuracy, %

Water 51.50 42.40
Ice 38.49 47.44

Kappa -0.0988

Table 11 VV GLCM Mean results
VV Mean

k – Nearest Neighbours
User’s Accuracy, % Producer’s Accuracy, %

Water 100 74.56
Ice 74.91 100

Kappa 0.7167
VV Mean

Random Trees
User’s Accuracy, % Producer’s Accuracy, %

Water 100 73.85
Ice 74.39 100

Kappa 0.7092
VV Mean

Support Vector Machine (SVM)
User’s Accuracy, % Producer’s Accuracy, %

Water 100 71.02
Ice 72.39 100

Kappa 0.6791

Table 12 Composite results
Composite of all metrics
k – Nearest Neighbours

User’s Accuracy, % Producer’s Accuracy, %
Water 84.96 73.85

Ice 70.63 82.79
Kappa 0.5549

Composite of all metrics
Random Trees

User’s Accuracy, % Producer’s Accuracy, %
Water 100 74.56

Ice 74.91 100
Kappa 0.7167

Composite of all metrics
Support Vector Machine (SVM)

User’s Accuracy, % Producer’s Accuracy, %
Water 100 69.61

Ice 71.43 100
Kappa 0.6642

Table 13 VV GLCM Mean + VV Intensity results
VV Mean + VV Backscatter Intensity

k – Nearest Neighbours
User’s Accuracy, % Producer’s Accuracy, %

Water 89.23 81.98
Ice 78.57 86.98

Kappa 0.6808
VV Mean + VV Backscatter Intensity

Random Trees
User’s Accuracy, % Producer’s Accuracy, %

Water 90.74 86.57
Ice 83.33 88.37

Kappa 0.7440
VV Mean + VV Backscatter Intensity

Support Vector Machine (SVM)
User’s Accuracy, % Producer’s Accuracy, %

Water 100 71.02
Ice 72.39 100

Kappa 0.6791

Table 14 Deep Learning results
Pyramid Scene Parsing Network, 100 epochs,  

VV Intensity + VV GLCM Mean
Water Ice

Precision 0.9340 0.7014
Recall 0.4076 0.8256
F1 0.5675 0.7584

The PSPNet deep learning model confirms machine 
learning results – a 100-epoch model with training data 
made up of 668 features that were, after data augmenta-
tion, transformed into 9.506 individual features did per-
form similarly to previous machine learning models and 
shows similar patterns. Water classification has a very 
high precision (few ice pixels classified as water) but a 
low recall (many missed water pixels). The overall F1 
score is mediocre – 0.5675. Meanwhile, ice classifica-
tion had a more balanced result of precision and recall, 
and an overall F1 score of 0.7584 (see Table 14).

It is imperative to mention that deep learning 
models require a very large amount of data and a long 
period of training in order to be useful. The data used 
here had only 668 real features that were rotated to 
artificially increase (augment) the feature count to 
9.506. Proper deep learning models could require 
tens or hundreds of thousands individual features be-
fore they can be considered for actual real-world de-
ployment, and not just for experimentation and test-
ing. This deep learning test is only meant to assess 
the extent to which this simple dataset can be fitted, 
and the resulting scores demonstrate that the model 
could classify ice with relative success, while water 
was met with certain difficulties.

The present higher error rate of water classifica-
tion could also be a result of a low sample rate of 
water features. It is possible that water features have a 
much broader range of possible values, and additional 
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samples (more unique and manually confirmed water 
rasters) might be needed for the model to increase its 
classification accuracy.

CONCLUSIONS

Haralick feature analysis demonstrated and con-
firmed textural analysis results of de Roda Husman 
(de Roda Husman et al. 2021), i.e. VV polarization 
GLCM Mean feature had better class separability 
than VV polarization backscatter intensity. No other 
analyzed feature had better separability than the base-
line VV polarization backscatter intensity from which 
the Haralick features were derived.

Machine learning tests also demonstrated that the 
GLCM Mean single-band raster achieves more fa-
vourable classification results (Kappa score 0.6791–
0.7167) than the baseline VV polarization backscatter 
intensity (Kappa score 0.4979–0.5876). A composite 
raster of all analyzed features did return a slightly bet-
ter result (Kappa score 0.5549–0.6642) than the base-
line but fell short of the accuracy of GLCM Mean. It 
is important to note that even the best results are still 
in the 0.70–0.80 Kappa score range, which signifies 
results of moderate accuracy (McHugh 2012). Deep 
learning tests returned similar results to classical ma-
chine learning and demonstrated a prevailing prob-
lem – lower accuracy of water classification.

The results demonstrate that the ambiguity of wa-
ter and ice backscatter intensity is not entirely elimi-
nated but is decreased with the use of GLCM Mean 
metric derived from VV polarization. Additional tests 
with more unique and manually classified rasters are 
needed, and possibly a new (or ensemble) method is 
required to produce a composite raster that could low-
er the remaining ambiguity even further. An experi-
mental test demonstrates that the use of deep learn-
ing to increase classification accuracy has a great 
potential but needs significantly more features within 
a broader range of possible values before the model 
can be properly deployed.

ACKNOWLEDGMENTS

The authors of the article would like to sincerely 
thank two anonymous reviewers for their valuable 
comments and recommendations.

REFERENCES

Boser, B.E., Guyon, I.M., Vapnik, V.N. 1992. A Training 
Algorithm for Optimal Margin Classifiers. Proceedings 
of the 5th Annual ACM Workshop on Computational 
Learning Theory, 144–52.

Carsey, F. D. 1992. Microwave Remote Sensing of Sea Ice. 
American Geophysical Union.

Chen, K. 2016. Chapter 2: SAR Models. In: Principles of 
Synthetic Aperture Radar Imaging: A System Simula-
tion Approach. Boca Raton: CRC Press.

Chu, T., Lindenschmidt, K. 2016. Integration of 
Space-Borne and Air-Borne Data in Monitor-
ing River Ice Processes in the Slave River, Cana-
da. Remote Sensing of Environment 181, 65–81.  
https://doi.org/10.1016/j.rse.2016.03.041

Clausi, D.A., Jernigan, M. (eds) 1998. A Fast Method to 
Determine Co-Occurrence Texture Features. IEEE 
transactions on geoscience and remote sensing 36 (1), 
298–300.

CloudFerro. 2022. Creodias Data Finder. Retrieved  
(https://finder.creodias.eu/)

De Roda Husman, S., van der Sanden, J.J., Lhermitte, S., 
Eleveld, M.A. 2021. Integrating Intensity and Context 
for Improved Supervised River Ice Classification from 
Dual-Pol Sentinel-1 SAR Data. International Journal 
of Applied Earth Observation and Geoinformation 101, 
102359. https://doi.org/10.1016/j.jag.2021.102359

Filipponi, F. 2019. Sentinel-1 GRD Preprocessing Work-
flow. In: The 3rd International Electronic Conference 
on Remote Sensing, 5.

Fraceschetti, G., Lanari, R. 1999. Chapter 1: Fundamen-
tals. In: Synthetic Aperture Radar Processing, 16–18. 
Boca Raton: CRC Press.

Gauthier, Y., Weber, F., Savary, S., Jasek, M., Paquet, L., 
Bernier, M. 2006. A Combined Classification Scheme 
to Characterise River Ice from SAR Data. A Combined 
Classification Scheme to Characterise River Ice from 
SAR Data 5 (1), 77–88.

Gulácsi, A., Kovács, K. 2020. Sentinel-1-Imagery-Based 
High-Resolution Water Cover Detection on Wetlands, 
Aided by Google Earth Engine. Remote Sensing 12 
(10), 1614. https://doi.org/10.3390/rs12101614

Hallikainen, M., Winebrenner, D. 1992. The Physical Ba-
sis for Sea Ice Remote Sensing. In: Carsey, F.D. (ed.) 
Microwave Remote Sensing of Sea Ice, 29–46. Ameri-
can Geophysical Union.

Haralick, R., Shanmugam, M.K., Dinstein, I. 1973. Tex-
tural Features for Image Classification. IEEE Transac-
tions on Systems, Man, and Cybernetics SMC-3 (6), 
610–21. https://doi.org/10.1109/TSMC.1973.4309314

Le Toan, T. 2007. Introduction to SAR Remote Sensing.
Los, H., Pawlowski, B. 2017. The Use of Sentinel-1 Im-

agery in the Analysis of River Ice Phenomena on the 
Lower Vistula in the 2015–2016 Winter Season. In: 
2017 Signal Processing Symposium (SPSympo), 1–5. 
IEEE.

MacQueen, J. 1967. Some Methods for Classification and 
Analysis of Multivariate Observations. In: Proceedings 
of the fifth Berkeley symposium on mathematical statis-
tics and probability 1, 281–97. Oakland, CA, USA.

McHugh, M.L. 2012. Interrater Reliability: The Kappa 
Statistic. Biochemia Medica 22 (3), 276–82.

Moreira, A., Prats-Iraola, I., Younis, M., Krieger, G., 
Hajnsek, I., Papathanassiou, K.P. 2013. A Tuto-
rial on Synthetic Aperture Radar. IEEE Geosci-



12

ence and Remote Sensing Magazine 1 (1), 6–43.  
https://doi.org/10.1109/MGRS.2013.2248301

OTB Team. 2018. Textural Features Extraction. In: OTB 
Cook Book Documentation, 111–12.

Ronneberger, O., Fischer, P., Brox, T. 2015. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation.

Scheuchl, B., Caves, R., Cumming, I., Staples, G. 2021. Au-
tomated Sea Ice Classification Using Spaceborne Polari-
metric SAR Data. In: IGARSS 2001. Scanning the Pres-
ent and Resolving the Future. Proceedings. IEEE 2001 
International Geoscience and Remote Sensing Sympo-
sium (Cat. No. 01CH37217). Vol. 7, 3117–19. IEEE.

Schwaizer, G. 2017. SAR/Optical Applications to Ice and 
Snow. 172.

Sherwin, C.W., Ruina, J.P., Rawcliffe, R.D. 1962. Some Early 
Developments in Synthetic Aperture Radar Systems. IRE 
Transactions on Military Electronics MIL 6(2), 111–115.  
https://doi.10.1109/IRET-MIL.1962.5008415

Shokr, M., Dabboor, M. 2020. Observations of SAR Pola-
rimetric Parameters of Lake and Fast Sea Ice during the 
Early Growth Phase. Remote Sensing of Environment 
247, 111910. https://doi.org/10.1016/j.rse.2020.111910

Singh, A., Kalke, H., Loewen, M., Ray, N. 2019. 
River Ice Segmentation with Deep Learning.  
https://doi.org/10.1109/TGRS.2020.2981082

Sobiech, J., Dierking, W. 2013. Observing Lake- and 
River-Ice Decay with SAR: Advantages and Limi-
tations of the Unsupervised k -Means Classifica-
tion Approach. Annals of Glaciology 54 (62), 65–72.  
https://doi.org/10.3189/2013AoG62A037

Weber, F., Nixon, D., Hurley, J. 2003. Semi-Automated 
Classification of River Ice Types on the Peace River 
Using RADARSAT-1 Synthetic Aperture Radar (SAR) 
Imagery. Canadian Journal of Civil Engineering 30 
(1), 11–27. https://doi.org/10.1139/l02-073

Winsvold, S.H., Kääb, A., Nuth, Ch., Andreassen, L.M., 
van Pelt, W.J.J., Schellenberger, T. 2018. Using 
SAR Satellite Data Time Series for Regional Gla-
cier Mapping. The Cryosphere 12 (3), 867–90.  
https://doi.org/10.5194/tc-12-867-2018

Yamashita, R., Nishio, M., Gian Do, R.K., Togashi, K. 
2018. Convolutional Neural Networks: An Overview 
and Application in Radiology. Insights into Imaging 9 
(4), 611–29. https://doi.org/10.1007/s13244-018-0639-9

Zhao, H., Shi, J., Qi, X., Wang, X., Jiaya, Jia. 2016. Pyra-
mid Scene Parsing Network. ArXiv ID, 1612.01105.

Internet sources:
Centre national d’études spatiales. [National Centre for 

Space Studies]. 2021. Orfeo Toolbox. Retrieved 
(https://www.orfeo-toolbox.org/)

ENVI. 2019. Calculate Confusion Matrices. L3Harris 
Geospatial. Retrieved December 20, 2022 (https://
www.l3harrisgeospatial.com/docs/CalculatingConfu-
sionMatrices.html%0Ahttps://www.harrisgeospatial.
com/docs/CalculatingConfusionMatrices.html)

ESRI. 2022. Compute Confusion Matrix. Retrieved De-
cember 20, 2022 (https://desktop.arcgis.com/en/arc-
map/latest/tools/spatial-analyst-toolbox/compute-con-
fusion-matrix.htm)

Fastai. 2022. Callbacks.Lr_finder. Retrieved December 20, 
2022 (https://fastai1.fast.ai/callbacks.lr_finder.html)

Liew, S.Ch. 2001. Microwave Frequency. SAR Imaging – 
Frequency, Polarisation and Incident Angle, Univer-
sity of Singapore. Retrieved February 20, 2022 (https://
crisp.nus.edu.sg/~research/tutorial/freqpol.htm)

National Aeronautics and Space Administration. 2022. 
Alaska Satellite Facility. Retrieved (https://search.asf.
alaska.edu/#/)

Sik-Ho, T. 2018. Review: PSPNet – Winner in ILSVRC 
2016 (Semantic Segmentation / Scene Parsing). To-
wards Data Science. Retrieved December 20, 2022 
(https://towardsdatascience.com/review-pspnet-win-
ner-in-ilsvrc-2016-semantic-segmentation-scene-pars-
ing-e089e5df177d)

The Mathworks Inc. 2022. Texture Analysis Using the 
Gray-Level Co-Occurrence Matrix (GLCM). Retrieved 
March 12, 2022 (https://uk.mathworks.com/help/im-
ages/texture-analysis-using-the-gray-level-co-occur-
rence-matrix-glcm.html)

Supporting Online Material
Figures S1-S19

https://www.orfeo-toolbox.org/
https://www.l3harrisgeospatial.com/docs/CalculatingConfusionMatrices.html%0Ahttps://www.harrisgeospatial.com/docs/CalculatingConfusionMatrices.html
https://www.l3harrisgeospatial.com/docs/CalculatingConfusionMatrices.html%0Ahttps://www.harrisgeospatial.com/docs/CalculatingConfusionMatrices.html
https://www.l3harrisgeospatial.com/docs/CalculatingConfusionMatrices.html%0Ahttps://www.harrisgeospatial.com/docs/CalculatingConfusionMatrices.html
https://www.l3harrisgeospatial.com/docs/CalculatingConfusionMatrices.html%0Ahttps://www.harrisgeospatial.com/docs/CalculatingConfusionMatrices.html
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/compute-confusion-matrix.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/compute-confusion-matrix.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/compute-confusion-matrix.htm
https://fastai1.fast.ai/callbacks.lr_finder.html
https://crisp.nus.edu.sg/~research/tutorial/freqpol.htm
https://crisp.nus.edu.sg/~research/tutorial/freqpol.htm
https://search.asf.alaska.edu/#/
https://search.asf.alaska.edu/#/
https://towardsdatascience.com/review-pspnet-winner-in-ilsvrc-2016-semantic-segmentation-scene-parsing-e089e5df177d
https://towardsdatascience.com/review-pspnet-winner-in-ilsvrc-2016-semantic-segmentation-scene-parsing-e089e5df177d
https://towardsdatascience.com/review-pspnet-winner-in-ilsvrc-2016-semantic-segmentation-scene-parsing-e089e5df177d
https://uk.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://uk.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://uk.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://baltica.gamtc.lt/administravimas/uploads/supp__online__mat_20230109_6450e71d1d843.pdf

