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Abstract. The main purpose of this study was to compare the performance and validation of six machine 
learning models (extreme gradient boosting, random forest, artificial neural network, support vector machine, 
C4.5 decision tree, and naive Bayes) in landslide susceptibility modelling. The province of Rize, which has the 
highest rate of landslide events in Türkiye, was chosen as the study area. The conditioning factors (distance to 
roads, lithology, drainage density, slope, topographic wetness index (TWI), soil depth, distance to rivers, land 
use, NDVI, plan curvature, elevation, aspect, profile curvature) affecting the landslide were determined using 
the ReliefF method. A total of 516 landslides were identified for creating models, comparing performance, and 
validating results. The performance and validation of the models were determined by the receiver operating 
characteristics (ROC), sensitivity, specificity, accuracy, and kappa index. The results show that the XGBoost 
model outperforms the other five machine learning models in terms of accuracy and performance and is the 
most effective model for generating landslide susceptibility maps in Rize (Türkiye).
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INTRODUCTION

Landslides are geological disasters that frequently 
occur worldwide and cause economic losses as well 
as severe damage to the natural and artificial environ-
ment and human life (Chen et al. 2018a; Chen, Yan et 
al. 2019). Different natural events or anthropogenic 
activities, such as earthquakes, flash floods, road con-
struction, deforestation, and mineral exploration, can 
trigger landslides, and events such as climate change 
and population have increased the risk of landslides 
worldwide (Chen et al. 2018b; Pradhan et al. 2014). 
According to the Emergency Events Database (EM-
DAT), approximately 40,000 people have lost their 
lives due to landslides in the last five decades. Using 
landslide risk assessment studies, disaster prevention 
and mitigation policies can be developed, and the 
damage caused by landslides can be reduced by mak-
ing disaster-oriented plans. One of the essential steps 

of landslide risk assessment and management is the 
creation of landslide susceptibility maps that predict 
and show the spatial likelihood of future landslides 
(Ercanoglu, Gokceoglu 2002).

Many qualitative and quantitative models have 
been developed for landslide susceptibility mapping 
(Dai et al. 2002; Youssef et al. 2016). Deterministic 
models based on physical foundations use mechani-
cal laws and require detailed geotechnical and hy-
drogeological data; therefore, they are unsuitable for 
large-area studies (Luo, Liu 2018; Pham, Shirzadi et 
al. 2018). In contrast, data-driven quantitative models 
are preferred for larger study areas because the model 
is created using only input-output data. These models 
generally fall into three types: heuristic, statistic, and 
machine learning (ML). In heuristic methods, a mod-
el is created by determining factor importance lev-
els from expert opinions (AlSanea, Abdullah 2021; 
Huang, Cao et al. 2020; Wu et al. 2020). The rela-
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tionship between landslide inventory and condition-
ing factors is used in statistical modelling methods, 
such as the frequency ratio method (Hong et al. 2019; 
Pradhan et al. 2014), the linear discriminant model 
(Youssef, Pourghasemi 2021), the weights-of-evi-
dence method (Kavzoglu et al. 2015; Teerarungsigul 
et al. 2016), and the information value method (Che 
et al. 2012; Sarkar et al. 2013). With the develop-
ments in computer informatics in recent years, many 
ML models have frequently been used in landslide 
susceptibility prediction (LSP) studies. The most 
important advantages of ML models over the other 
models are their reproducibility and ability to handle 
multi-faceted factors, update potential, produce more 
meaningful or accurate results, and process data un-
der uncertain or dynamic conditions (He et al. 2012). 
This type of model includes binary logical regression 
(Akinci, Zeybek 2021; Bai et al. 2021; Huang, Chen 
et al. 2020; Wang et al. 2020), decision tree (DT) 
(Huang, Chen et al. 2020), support vector machine 
(SVM) (Akinci, Zeybek 2021; Kavzoglu, Colkesen 
2009; Orhan et al. 2022), artificial neural networks 
(ANN) (Hu et al. 2021; Saha, Roy, Hembram et al. 
2021; Youssef, Pourghasemi 2021; Zhou et al. 2018), 
adaptive neuro-fuzzy inference system (ANFIS) 
(Chen et al. 2017; Chen, Panahi et al. 2019), naive 
Bayes (NB) (Ali et al. 2021; Oh et al. 2019; Taheri et 
al. 2019), generalized additive model (GAM) (Chen 
et al. 2017; Youssef et al. 2016), AdaBoost (AB) 
(Kadavi et al. 2018; Kutlug Sahin, Colkesen 2019, 
2021), random forest (RF) (Akinci, Zeybek 2021; Bai 
et al. 2021; Bui et al. 2020; Chang et al. 2019; Iban, 
Sekertekin 2022; Kong et al. 2021; Orhan et al. 2022; 
Sahin et al. 2018), classification and regression tree 
(CART) (Orhan et al. 2022; Saha, Roy, Hembram et 
al. 2021; Youssef et al. 2016), multivariate adaptive 
regression splines (MARS) (Youssef, Pourghasemi 
2021), rotation forest (Kutlug Sahin, Colkesen 2021; 
Saha, Roy, Pradhan et al. 2021).

Although many models are frequently used in 
the literature, there is no consensus on the most ap-
propriate or best model. Further comparison of dif-
ferent ML methods is critical to improving landslide 
susceptibility modelling (Pham, Prakash et al. 2018). 
Although naive Bayes (NB), artificial neural network 
(ANN), support vector machine (SVM), extreme gra-
dient boosting (XGBoost), random forest (RF), and 
C4.5 decision tree models are used in the literature, 
the absence of any study comparing these models is 
a gap in the literature. In this context, the perform-
ance and validation of six models in landslide sus-
ceptibility modelling are compared in this study. It is 
known that the northern part of Türkiye, especially 
the Black Sea region, has been severely affected by 
landslides for a long time due to excessive rainfall 
and is the most landslide-prone region of the coun-

try. According to Disaster and Emergency Manage-
ment Presidency (AFAD), considering the number of 
landslide disaster cases, Rize province has the second 
highest number of cases after neighbouring Trabzon. 
In this context, Rize, the province with the highest 
number of landslides, was selected as the study area. 
Thirteen conditioning factors were considered: eleva-
tion, slope, aspect, topographic wetness index (TWI), 
plan curvature, profile curvature, lithology, land use, 
NDVI, roads, soil type, streams, and drainage den-
sity. The receiver operating characteristics (ROC), 
sensitivity, specificity, F-measure, accuracy, and ka-
ppa index were used for calculating the accuracy and 
validating the models.

MATERIALS AND METHODS

Study area

Rize, the province with the most landslides in 
Türkiye, is located on the eastern Black Sea coast-
line between 40° 30′ and 41° 20′ N and 40° 20′ and 
41° 25′ E (Fig. 1). The province, which is adjacent to 
Trabzon in the west, Erzurum in the south, and Artvin 
in the east, is bordered by the Black Sea in the north. 
Approximately 78% of the province’s territory, which 
totals approximately 3900 km2, is mountainous. The 
average annual total precipitation is 2297.0 mm, mak-
ing Rize the rainiest province in Türkiye.

Fig. 1 Study area

Landslide conditioning factors

Thirteen conditioning factors, namely elevation, 
slope, aspect, topographic wetness index (TWI), 
plan curvature, profile curvature, lithology, land use, 
NDVI, roads, soil type, streams, and drainage density 
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were selected for landslide susceptibility mapping, 
considering the landslide characteristics of the study 
area and previous studies. Data type and sources of 
the factor are shown in Table 1.

The spatial relation calculated by the frequency ra-
tio (FR) between these factors and landslide is shown 
in Table 2.

Landslide inventory

It is assumed that future landslides may occur in 
conditions similar to those that have occurred in the 
past (Varnes 1984). Therefore, the first and most cru-
cial step in landslide susceptibility, hazard, or risk as-
sessment studies is to obtain landslide inventory data. 

Table 1 Data types and sources
Factor Scale/Resolution Data Type Source

Elevation

12.5 m Raster ALOS- PALSAR digital elevation model

Slope
TWI
Aspect
Plan Curvature
Profile Curvature
Drainage density
Lithology 1/100000 Vector General Directorate of Mineral Research and Exploration
Land Use 100 m Raster Coordination of Information on the Environment (CORINE), 2018
NDWI 30 m Raster The United States Geological Survey (USGS) Landsat 8 satellite image
Soil depth 1/100000 Vector RTMAF (1991; https://tad.tarim.gov.tr/TadPortal/)
Distance to river

1/100000 Vector Environmental Plan, Ministry of Environment and Urbanization (MEU), 2021
Distance to road

Table 2 Frequency ratio
Factors Classes % of class area % of landslide area FR

Elevation 0–500 0.21 0.59 2.77
500–1000 0.17 0.20 1.17
1000–2000 0.27 0.15 0.56
2000–3000 0.30 0.04 0.14
3000–4000 0.04 0.02 0.37

Slope 0–10 0.41 0.16 0.38
10–20 0.18 0.13 0.73
20–30 0.02 0.03 1.23
30–40 0.04 0.14 3.25
40–50 0.08 0.26 3.29
50–60 0.12 0.16 1.33
>60 0.15 0.14 0.88

TWI -1.821–3.152 0.35 0.27 0.76
3.152–4.655 0.17 0.16 0.94
4.655–6.043 0.41 0.45 1.09
6.043–7.777 0.05 0.11 2.48
7.777–10.321 0.01 0.01 0.89
10.321–27.552 0.01 0.00 0.00

Aspect Flat (-1) 0.01 0.00 0.00
North (0–22.5) + (337.5–360) 0.15 0.15 1.01
Northeast (22.5–67.5) 0.13 0.13 0.95
East (67.5–112.5) 0.11 0.07 0.63
Southeast (112.5–157.5) 0.08 0.10 1.20
South (157.5–202.5) 0.10 0.11 1.17
Southwest (202.5–247.5) 0.12 0.13 1.03
West (247.5–292.5) 0.14 0.18 1.29
Northwest (292.5–337.5) 0.15 0.13 0.85

Plan Curvature -15.09–-1.82 0.03 0.03 0.98
-1.82–-0.61 0.14 0.11 0.75
-0.61–0.30 0.50 0.61 1.21
0.30–1.35 0.27 0.22 0.80
1.35–23.38 0.05 0.04 0.69
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Factors Classes % of class area % of landslide area FR
Profile Curvature -19.30 - -1.55 0.04 0.03 0.73

-1.55–-0.44 0.22 0.20 0.91
-0.44–0.39 0.46 0.62 1.34
0.39–1.364 0.24 0.14 0.57
1.64–16.06 0.04 0.02 0.44

Lithology Alluvium 0.01 0.01 0.90
Instrusive rocks 0.44 0.13 0.29
Dasite riodasite and pyroclastics 0.09 0.25 2.74
Plio-quaternary units 0.01 0.00 0.33
Andasite basalt and pyroclastics 0.43 0.53 1.23
Sedimantery units 0.02 0.08 4.05

Land Use Scrub and/or herbaceous vegetation associations 0.23 0.07 0.33
Artificial, non-agricultural vegetated areas 0.02 0.00 0.00
Industrial, commercial and transport units 0.01 0.02 2.20
Open spaces with little or no vegetation 0.04 0.02 0.45
Heterogeneous agricultural areas 0.05 0.21 4.14
Permanent crops 0.10 0.43 4.27
Inland waters 0.01 0.01 1.09
Urban fabric 0.25 0.00 0.00
Pastures 0.05 0.00 0.00
Forests 0.24 0.24 1.01

NDWI -0.99–0.19 0.05 0.04 0.83
0.19–0.39 0.10 0.05 0.55
0.39–0.55 0.19 0.04 0.23
0.55–0.67 0.26 0.23 0.88
0.67–0.96 0.40 0.63 1.57

Soil depth Deep 0.14 0.41 2.85
Moderate 0.33 0.40 1.21
Shallow 0.02 0.01 0.40
Lithosol 0.51 0.18 0.36

Drainage density 0–0.87 0.27 0.16 0.58
0.87–1.29 0.16 0.15 0.94
1.29–1.76 0.05 0.05 1.01
1.76–2.49 0.37 0.43 1.17
2.49–3.63 0.16 0.21 1.35

Distance to river 0–250 0.09 0.13 1.33
250–500 0.09 0.12 1.30
500–750 0.11 0.11 1.01
750–1000 0.10 0.11 1.08
>1000 0.61 0.54 0.89

Distance to road 0–250 0.38 0.50 1.33
250–500 0.17 0.20 1.13
500–750 0.11 0.10 0.90
750–1000 0.08 0.05 0.62
>1000 0.25 0.15 0.58

Within the scope of this study, 204 events are from 
the landslide data registered in the Disaster and Emer-
gency Management Presidency (AFAD) covering the 
period from 01.01.1950 to 01.10.2021, 78 events are 
taken from orthophoto images of the region, 147 are 
from previous studies, and 87 are from field studies. 
In total, 516 landslide inventory data were collected, 
and a map was created (Fig. 1).

Elevation

The elevation change can affect natural and un-
natural factors, such as vegetation types and precipi-
tation. For this reason, the height parameter has been 
used in many studies because it directly affects land-
slide susceptibility (Ali et al. 2021; Bui et al. 2020; 
Chang et al. 2019; Colkesen et al. 2016). A high-res-
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defined as a curvature that developed parallel to the 
slope orientation (Olaya 2009). Many studies have 
emphasized that different slope curvatures have dif-
ferent susceptibilities to landslides (Arabameri et al. 
2020; Chang et al. 2019; Hu et al. 2021; Huang et al. 
2022). The plan curvature and profile curvature maps 
were created using DEM data and divided into five 
classes using the natural break method (Figs 2 e, f).

Lithology

Lithology describes the physical characteristics of 
rock units in the field, such as colour, texture, and 
grain size (Dai et al. 2002). In addition, different 
lithological formations have various shear stresses, 
water transmission patterns, and other susceptibility 
properties. Therefore, lithology has frequently been 
used in landslide susceptibility studies (Rane, Vin-
cent 2022; Saha, Roy, Hembram et al. 2021; Yalcin 
2008; Yong et al. 2022; Zhou et al. 2018).

Rize is located on the eastern Black Sea magmatic 
belt. This belt is of Upper Cretaceous age and consists 
of volcanic rocks and granitic plutons developed in 
Palaeozoic and Mesozoic units starting from Bulgaria 
and extending to Georgia. While Upper Cretaceous–
Eocene magmatic rocks are observed in large parts of 
Rize province, Neogene sediments are also observed 
along the Black Sea coast. The northern areas consist 
of Upper Cretaceous aged tuffs and lavas, accom-
panied by pyroclastic flow units and volcanogenic 
clasts. Over these Cretaceous units, Eocene sediments 
and volcanics also outcrop from place to place. In the 
Upper Cretaceous–Eocene period, when the volcan-
ic activity stopped, a limestone-marl-claystone and 
sandstone alternation is seen in a precipitated carbon-
ate succession. At the end of the Eocene, pyroclastic 
units again dominated. This Cretaceous–Eocene se-
quence underwent a severe alteration due to the rainy 
climate and was covered by a clay-dominated rego-
lith that developed due to this alteration. The region 
contains alternating sandstone, sandy limestone, and 
marl, starting with conglomerates derived from the 
underlying volcanic rocks during the Neogene period. 
The youngest deposits known in the region consist of 
Plio-Quaternary loose cementitious conglomerates. 
The pebbles belonging to all old rock units, mainly 
the volcanic, were formed in a completely terrestrial 
environment and are overlain by terraces and allu-
vium. From the coastline to the south and in the high 
mountainous area, granitic rocks and accompanying 
hypabyssal lavas dominate. Alluviums are encoun-
tered in parts of the great river valleys up to 10 km 
from the sea. The lithology map was digitized from 
a 1/100,000 geological map produced by the General 
Directorate of Mineral Research and Exploration and 
is shown in Fig. 3 (MTA 2005).

olution (12.5 m) and radiometrically terrain corrected 
ALOS PALSAR digital elevation model (DEM) data 
was used to create an elevation map, which was di-
vided into five classes (Fig. 2a).

Slope

Since the slope is an essential indicator in explain-
ing the topographic structure and morphological ele-
ments of the terrain, the slope criterion is one of the 
most frequently used factors in landslide susceptibil-
ity analysis. In addition, the change in the slope and 
the deterioration of the balance of the material on the 
slope are the most important factors in the occurrence 
of the landslide (Fang et al. 2020; Huang, Cao et al. 
2020; Orhan et al. 2022). The slope map was creat-
ed using DEM data and separated into seven classes 
within the study area (Fig. 2b).

Aspect

The aspect, the orientation of a slope face in de-
grees from north, controls the decomposition rate of 
natural environmental features in the region, such as 
humidity, precipitation, wind, and sunshine duration. 
Therefore, soil moisture and saturation indirectly af-
fect the factors that cause landslides, such as vegeta-
tion and soil thickness. In this context, the aspect is 
another parameter commonly used in landslide sus-
ceptibility studies (Huang, Chen et al. 2020; Kadavi 
et al. 2018; Merghadi et al. 2018). In this study, an 
aspect map is created from the DEM and is grouped 
into nine groups (Fig. 2c).

Topographic wetness index (TWI)

The topographic wetness index (TWI), developed 
by Beven, Kirkby (2009), is a parameter used in anal-
yses to determine the potential saturation of soils or, 
in other words, the water-holding capacity of the sur-
face due to the slope, and it is used very frequently 
in landslide studies (Mandal et al. 2021; Wang et al. 
2020; Zhou et al. 2018). The TWI map was created 
using the DEM data and divided into five classes us-
ing the natural break method (Fig. 2d).

Plan curvature and profile curvature

The curvature parameter is typically determined 
by taking the second derivative of the line formed 
from the intersection of the land surface and a plane 
(Wilson, Gallant 2000). According to another clas-
sification system, the curvature can mostly be divided 
into two subclasses: profile and plan. Plan curvature 
is defined as a curvature determined perpendicular 
to the slope orientation, while profile curvature is 
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Fig. 2 a) Elevation, b) slope, c) aspect, d) topographic wetness index (TWI), e) plan curvature, and f) profile curvature 
map
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Fig. 3 Lithology map

Land use

Parameters such as land use (e.g., residential, ag-
ricultural, forested, or densely and sparsely vegetat-
ed) do not cause landslides. However, many studies 
evaluating landslide susceptibility have emphasized 
that these parameters can affect resistance to land-
slide formation (Ali et al. 2021; Hussain et al. 2022; 
Kavzoglu, Colkesen 2009; Kong et al. 2021). In this 
study, the CORINE-2018 land cover/use data was 
used to create a land use map, and the study area was 
divided into ten classes (Fig. 4a).

Normalized difference vegetation index (NDVI)

The normalized difference vegetation index 
(NDVI) is a parameter indicating the plant density 
status of the land in landslide susceptibility assess-

Fig. 4 a) Land use, b) normalized difference vegetation index (NDVI), c) soil depth, and d) drainage density maps
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ments. NDVI is obtained by calculating the propor-
tions of the near-infrared and red spectral ranges, to 
which plants are sensitive, in satellite images (Chen 
et al. 2017; He et al. 2012; Huang, Cao et al. 2020; 
Hussain et al. 2022; Youssef, Pourghasemi 2021). 
The NDVI map was created using Landsat 8 data for 
this study (Fig. 4b).

Soil depth

The landslide volume is directly related to the soil 
depth, which significantly affects the shear strength 
and stretching of the slope. It is thought that the 
deeper the soil, the larger the moving mass will be 
(Pradhan, Kim 2014). The soil map in this work was 
digitized from a regional soil map (1/100,000) and di-
vided into four classes, such as deep, moderate, shal-
low, and lithosol (Fig. 4c).

Drainage density

Another important factor affecting stability is the 
drainage density, which is the ratio of the total length 
of the river to the basin. Areas with a high drainage 
density are where soil moisture is relatively high com-
pared to drier areas, and landslides are more likely 
to occur (Kavzoglu et al. 2014; Pradhan, Kim 2014). 
The drainage density map was created using DEM 
data and divided into five classes using the natural 
break method (Fig. 4d).

Distance to river

The distance of the slopes to the drainage net-
works, such as streams and runoff channels, is one 
of the most important factors affecting the stability of 

the slopes. Streams erode the slopes and esplanades 
and impair their stability. In addition, streams affect 
the materials that make up the slopes by saturating 
them with water, disrupting their stability. As a result, 
landslides are more likely to occur in areas close to 
streams, where the amount of water retained in the 
soil will be higher than in other areas (Chen, Panahi 
et al. 2019; Pourghasemi et al. 2012; Pradhan et al. 
2014). In this study, the map of the distance to a river 
was divided into five buffer zones (Fig. 5a).

Distance to roads

Topography is constantly changing due to various 
development activities. Particularly in mountainous 
regions, the construction of road networks by cutting 
into the slopes is vital and makes these regions vul-
nerable to slope slides. For this reason, many studies 
have emphasized the importance of the distance to 
the road parameter (Bai et al. 2021; Chen et al. 2017, 
2019a; Hong et al. 2019; Kidanu et al. 2018; Reis 
et al. 2012). Similar to the effect of the distance to 
rivers, landslides may occur on the road and the side 
of the slopes affected by roads (Yalcin 2008). In this 
study, the distance to road maps was divided into five 
zones (Fig. 5b).

Machine learning models

Naive Bayes (NB)
The NB algorithm, a fast learner classification 

technique frequently used in many earth science ap-
plications, is suitable for classification in large-scale, 
mixed, and incomplete datasets (Ali et al. 2021; Chen 
et al. 2019b; Pham, Shirzadi et al. 2018; Taheri et 
al. 2019). Furthermore, using NB raises the prob-

Fig. 5 a) Distance to river and b) distance to road maps
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ability of classification in cases without dependency 
between the variables and the conditioning factors. In 
landslide susceptibility modelling, the NB algorithm 
has four main steps: first, the training dataset is se-
lected; second, the posterior probability of each class 
is determined; third, class level and covariance matrix 
are calculated; and finally, a discriminant function for 
separate classes is created (i.e., landslide/non-land-
slide classes) (Ali et al. 2021; Khosravi et al. 2016)

C4.5 decision tree 
The C4.5 decision tree (C4.5) is a decision tree 

algorithm developed from the ID3 algorithm derived 
from information theory and is widely used in clas-
sification problems (Bui et al. 2020). C4.5 can deal 
with continuous dependent variables without branch 
limitations and uses entropy and information gain cri-
teria to select the best dividing feature. In the C4.5 
algorithm, when all samples belong to the same class, 
a leaf node is created, and this node is given the name 
of this class. If none of the features have information 
gain and an unprecedented class emerges, it creates 
a decision node using the expected value of the class 
(Hu et al. 2021).

Random Forest
Random forest (RF) is an ensemble approach 

that uses decision tree models widely used for clas-
sification and regression problems and was gener-
ated by Breiman (2001). The RF model branches all 
the nodes by choosing the best randomly picked at-
tributes in each node instead of branching the nodes 
selected from the best attributes in the dataset. Each 
dataset is generated by displacement from the origi-
nal dataset (Akinci, Zeybek 2021; Iban, Sekertekin 
2022; Merghadi et al. 2020; Orhan et al. 2022; Rane, 
Vincent 2022; Wang et al. 2020).

Extreme gradient boosting (XGBoost)
XGBoost has been widely used for classification 

and regression problems in many geoscience applica-
tions (Aydin, Iban 2022; Hussain et al. 2022; Iban, 
Bilgilioglu 2023; Shmuel, Heifetz 2022). XGBoost 
constantly produces new trees by correcting the er-
ror of previous trees, which is the most significant 
difference from the RF method. The number of trees 
and the learning rate are the main parameters of the 
XGBoost model because XGBoost aims to enhance 
the output of multiple imperfect learners by merging 
them (Hussain et al. 2022).

Support vector machine (SVM)
The SVM model is a supervised machine learn-

ing model based on statistical learning theory, which 
has been widely used for classification and regression 
problems and was developed by Vapnik (1995). The 

main principle of the model is structural risk minimi-
zation. The main characteristic of SVM models is that 
during the learning process, the initial input space is 
transformed into a higher-dimensional feature space 
to estimate an ideal separating hyperplane and clas-
sify new unknown examples into known classes (Ak-
inci, Zeybek 2021; Chang et al. 2019; Huang, Chen 
et al. 2020; Kong et al. 2021; Pham, Prakash et al. 
2018).

Artificial neural network (ANN)
ANN is a computational program modelled on 

the neural network of the human brain that has been 
widely used in landslide susceptibility modelling (Al-
Najjar, Pradhan 2021; Bragagnolo et al. 2020; Hu et 
al. 2021; Saha, Roy, Hembram et al. 2021; Xie et al. 
2021; Youssef, Pourghasemi 2021; Zhou et al. 2018). 
ANN aims to develop a model for forecasting the 
output of input factors. The multi-layer perceptron 
(MLP) consists of three layers: input, hidden, and 
output, which is the typical network structure. In ad-
dition, the backpropagation neural network (BPNN) 
is one of the most influential ANNs in LSM. In the 
training stage, the BPNN model chooses the weight 
of the input layers, and the mean-square error is cal-
culated to find the differences between the calculated 
and the expected values for all layers. The general-
ized delta rule updates each weight in the backpropa-
gation stage. This procedure occurs iteratively until 
the error of the network reaches an adequate value 
(Orhan et al. 2022).

Preparation of training and validation datasets

In order to create landslide susceptibility models, 
two clusters, landslide and non-landslide, should be 
created. In this context, in addition to the inventory 
data (positive) of up to 516 data points, the same 
number of non-landslide (negative) samples were 
randomly selected. In addition, the data to be used 
to create the model and validation should be divid-
ed at a certain rate. Although the literature does not 
show a consistent ratio, a ratio of 70:30 was used in 
this study, in agreement with many other studies. In 
this context, 1032 landslide and non-landslide sam-
ples were randomly divided. Accordingly, up to 722 
(70%) points were used for training and 310 (30%) 
for verification.

Model performance and validation methods

It is very important to evaluate the performance of 
a model created with ML. There is no value or mean-
ing in building a model without validation. However, 
there is no clear consensus on which method should 
be used to evaluate performance and accuracy in ML 
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studies. Various metrics are used to evaluate model 
performance and accuracy. The model performance 
metrics used in the study are presented in Table 3. 
True Positives (TP) describes the number of sam-
ples that are landslides in the dataset and classified 
as landslides by the model. True Negatives (TN) de-
scribes the number of samples that are non-landslides 
in the dataset and are classified as non-landslides by 
the model. The number of samples classified as non-
landslide samples by the model but identified as land-
slides in the dataset is known as False Positives (FP), 
while the number of samples classified as landslides 
by the model but identified as non-landslide samples 
in the dataset is known as False Negatives (FN). The 
calculation of these metrics requires the use of an 
error matrix, which forms the basis for auditing the 
model performance (Colkesen et al. 2016; Huang, 
Cao et al. 2020; Huang, Chen et al. 2020; Kadavi et 
al. 2018; Pradhan et al. 2014). Specificity, accuracy, 
and kappa (κ) index were calculated for each model 
run using TP, FN, TN and FP values. Other metrics 
used is Area Under the Curve (AUC). Receiver oper-
ator characteristic (ROC) curves can be used as a per-
formance evaluation metric for binary classification 
tasks using a probability curve. The ROC curve is a 
useful tool for evaluating the results of predictions. A 
ROC curve is a curve in which the rates of true posi-
tivity (sensitivity) on the vertical axis and false posi-
tivity (1−specificity) on the horizontal axis are shown 
for different threshold values. Each point on the ROC 
curve reveals the sensitivity and 1−specificity values   
corresponding to different threshold values. Thresh-
old values   that generally give low false positive rates 
also have low true positive rates. As the true positivity 
rate increases, the false positivity rate also increases. 
The area under the ROC is   between 0.50 and 1.00, 
depending on the activity level. The higher the AUC, 
the better the classification performance. An AUC 
higher than 0.9 indicates that the classification is al-
most perfect (Colkesen et al. 2016; He et al. 2012; 
Kong et al. 2021; Kutlug Sahin, Colkesen 2021; Oh 
et al. 2019; Pradhan et al. 2014; Sarkar et al. 2013).

Table 3 Statistical measurements
Statistical methods Formula Description

Sensitivity
TP

FN + TP
The ability to find landslide 
samples.

Specificity
TP

FB + TN
The ability to find non-
landslide samples.

Accuracy
TP + TN

TP + FN + FP + TN
Overall accuracy of clas-
sification.

AUC TN
TN + FN

1
2

TP
TP + FN+ The ability of a classifier to 

avoid mis-classification.

Kappa Accuracy – Px
1 – Px

  where: (TN + FP) × (TN + FN) × (FN + TP) × (FP + TP)
(TN + TP + FN + FP)2Px = Agreement between the 

model and reality.

RESULTS

LSM conditioning factor analysis

In machine learning studies, it is crucial to evalu-
ate the appropriateness of the chosen factors before 
the model training stage. In this research, the Relief F 
feature selection method, developed by Kira, Rendell 
(1992) and frequently employed in landslide suscep-
tibility studies, was utilized to assess the impact of the 
13 selected factors on the model. The Relief F method 
relies on probability theory and determines the effect 
of the selected factor based on their conditional de-
pendencies. In this regard, it computes factor weights 
to evaluate the significance and suitability of factors. 
A higher weight value indicates a greater influence of 
the factor. On the other hand, a lower weight signifies 
a lesser impact, and if the weight is “0,” the criterion 
has no effect on the model and should not be included 
since it is irrelevant to the current analysis. In this 
study, the average merit (AM) values of all factors 
are presented in Table 4. As all 13 factors had values 
greater than zero, they were all incorporated into the 
model training process. Furthermore, as depicted in 
Table 4, the distance to road had the highest predic-
tive capability with the highest AM value of 0.0821, 
followed by lithology (AM: 0.0781), drainage density 
(AM: 0.0734), while the factors with the least effect 
are elevation (AM: 0.0405), aspect (0.0371), and pro-
file curvature (0.0311).

Model construction

In a previous study, six machine learning models 
were built using the tenfold cross-validation approach 
with a training dataset. For each of the six models, 
Landslide Susceptibility Indices (LSI) were gener-
ated and subsequently reclassified into five categories 
(very low, low, moderate, high, and very high suscep-
tibility). In the literature, there are different methods 
used to reclassify the generated index map, such as 
equal interval, quantile, standard deviation, natural 
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break, and geometric interval. The histogram of the 
index map was analyzed and the best classification 
result was obtained with the natural break method. In 
this context, the intervals for the indices were deter-
mined using the natural break method, resulting in the 
creation of landslide susceptibility maps (Fig. 6).

Figure 6 displays the spatial distribution of each 
susceptibility class as a percentage and the propor-
tion of landslide samples that correspond to these risk 
classes. The XGBoost model estimates that 30.14% 
of the study area exhibits very high susceptibility, 
28.22% high, 28.93% moderate, 9.58% low, and 
3.14% very low susceptibility. In the LSM produced 
by the RF model, 24.14% of the study area is clas-
sified as having very high susceptibility, 30.54% 
high, 26.50% moderate, 15.58% low, and 3.25% very 
low susceptibility. According to the ANN model, 
27.46% of the study area has very high susceptibil-
ity, while 33.50%, 29.09%, 7.22%, and 2.74% of the 
study area fall under the high, moderate, low, and 
very low susceptibility categories, respectively. The 
SVM model predicts that 22.72% of the study area 

Table 4 Average merit (AM) values of the landslide conditioning factors
Landslide conditioning factors Average merit (AM) Standard deviation (Sd)

Distance to roads 0.0821 0.005
Lithology 0.0781 0.004
Drainage density 0.0734 0.006
Slope 0.0711 0.007
TWI 0.0694 0.010
Soil depth 0.0657 0.004
Distance to rivers 0.0601 0.009
Land use 0.0574 0.011
NDVI 0.0501 0.007
Plan curvature 0.0497 0.008
Elevation 0.0405 0.011
Aspect 0.0371 0.008
Profile curvature 0.0311 0.010

Table 5 Areal dis1tribution of each susceptibility class
Susceptibility class XGBoost (%) RF (%) ANN (%) SVM (%) C4.5 (%) NB (%)

Very low 3.14 3.25 2.74 2.94 2.56 3.21
Low 9.58 15.58 7.22 16.05 10.07 15.53
Moderate 28.93 26.50 29.09 25.54 28.72 31.39
High 28.22 30.54 33.50 32.76 37.02 32.23
Very high 30.14 24.14 27.46 22.72 21.62 17.64

Table 6 Parameters of the AUC (training sample)

Model AUC Std. Error  
Confidence interval (95%)

Lower Bound Upper Bound Significance level (Area = 0.05)
XGBoost 0.941 0.0211 0.030 0.911 0.971 0.0001
RF 0.934 0.0234 0.034 0.900 0.968 0.0001
ANN 0.927 0.0239 0.040 0.887 0.967 0.0001
SVM 0.911 0.0244 0.042 0.869 0.953 0.0001
C4.5 0.893 0.0258 0.044 0.849 0.937 0.0001
NB 0.871 0.0279 0.048 0.823 0.919 0.0001

has very high susceptibility, 32.76% high, 25.54% 
moderate, 16.05% low, and 2.94% very low suscep-
tibility. Regarding the LSM developed by the C4.5 
model, 21.62% of the study area displays very high 
susceptibility, while 37.02%, 28.72%, 10.07%, and 
2.56% of the study area are identified as having high, 
moderate, low, and very low susceptibility, respec-
tively. The NB model estimates that 17.64% of the 
study area has very high susceptibility, 32.23% high, 
31.39% moderate, 15.53% low, and 3.21% very low 
susceptibility (Table 5).

Model performance and validation

The performance of the six ML models was meas-
ured using ROC and statistical methods such as sensi-
tivity, specificity, accuracy, and the kappa index. The 
XGBoost model had the highest AUC value (0.941), 
followed by the RF model (0.934), ANN model 
(0.927), SVM model (0.911), C4.5 model (0.893), 
and NB model (0.871). The results are summarized 
in Table 6.
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Fig. 6 Landslide susceptibility maps (a: XGBoost, b: RF, c: ANN, d: SVM, e: C4.5, and f: NB)
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Table 7 reveals that the XGBoost model achieved the 
best landslide pixel classification performance (sensi-
tivity) at 93.92%, followed by the RF model (93.09%), 
ANN model (92.52%), SVM model (91.67%), C4.5 
model (90.00%), and NB model (87.50%). The XG-
Boost model also exhibited the highest performance 
in classifying non-landslide pixels (specificity) at 
94.17%, followed by the RF model (93.33%), ANN 
model (92.52%), SVM model (91.44%), C4.5 model 
(89.78%), and NB model (87.29%). In terms of ac-
curacy, the XGBoost model ranked highest with 
94.04%, followed by the RF model (93.21%), ANN 
model (92.52%), SVM model (91.55%), C4.5 model 
(89.89%), and NB model (87.40%). The kappa index 
for all six models ranged from 74.79% to 88.09%, 
demonstrating sufficient agreement between the mod-
els and actual conditions.

The ROC curve was used to evaluate the predic-
tion probability of the models with validation data-
set (Table 8). The XGBoost model had the highest 
prediction probability with the highest AUC value 
(0.923), followed by the RF model (0.918), ANN 
model (0.907), SVM model (0.891), C4.5 model 
(0.877), and NB model (0.858).

Furthermore, a variety of statistical index-based 
assessments were employed to gauge the perform-
ance of the six models, as detailed in Table 9. The 
XGBoost model achieved the highest performance 
in landslide pixel classification (92.31%), followed 
by the RF model (91.61%), ANN model (90.91%), 
SVM model (89.68%), C4.5 model (88.89%), and 
NB model (85.71%). For non-landslide pixel classi-
fication, the XGBoost model demonstrated the high-
est performance (specificity = 92.86%), followed 
by the RF model (91.61%), ANN model (90.38%), 
SVM model (89.68%), C4.5 model (97.90%), and 
NB model (85.48%). In terms of accuracy, the XG-
Boost model exhibited the highest value at 92.58%, 
with the RF model (91.61%), ANN model (90.65%), 
SVM model (89.68%), C4.5 model (88.39%), and 
NB model (85.48%) following suit. The kappa index 
for all models fell between 70.97% and 85.16%, indi-
cating an adequate level of agreement between these 
models and the actual situation.

Overall, comparing all six models with the training 
and validation datasets shows acceptable goodness 
of fit. One of these six models, the XGBoost model, 
gave better results than the other five models.

Table 7 Model performance
 XGBoost RF ANN SVM C4.5 NB

TP 340 337 334 330 324 315
TN 339 336 334 331 325 316
FP 21 24 27 31 37 46
FN 22 25 27 30 36 45
Sensitivity 93.92% 93.09% 92.52% 91.67% 90.00% 87.50%
Specificity 94.17% 93.33% 92.52% 91.44% 89.78% 87.29%
Accuracy 94.04% 93.21% 92.52% 91.55% 89.89% 87.40%
Kappa Index 88.09% 86.43% 85.04% 83.10% 79.78% 74.79%

Table 8 Parameters of the AUC (test sample)

Model AUC Std. Error
Confidence interval (95%)

Lower Bound Upper Bound Significance level (Area = 0.05)
XGBoost 0.923 0.941 0.034 0.889 0.957 0.0001
RF 0.918 0.934 0.041 0.877 0.959 0.0001
ANN 0.907 0.927 0.042 0.865 0.949 0.0001
SVM 0.891 0.911 0.045 0.846 0.936 0.0001
C4.5 0.877 0.893 0.047 0.830 0.924 0.0001
NB 0.858 0.871 0.05 0.808 0.908 0.0001

Table 9 Model validation
 XGBoost RF ANN SVM C4.5 NB

TP 144 142 140 139 136 132
TN 143 142 141 139 138 133
FP 11 13 15 16 19 23
FN 12 13 14 16 17 22
Sensitivity 92.31% 91.61% 90.91% 89.68% 88.89% 85.71%
Specificity 92.86% 91.61% 90.38% 89.68% 87.90% 85.26%
Accuracy 92.58% 91.61% 90.65% 89.68% 88.39% 85.48%
Kappa Index 85.16% 83.23% 81.29% 79.35% 76.77% 70.97%
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DISCUSSION

In this study, six different machine learning mod-
els (XGBoost, RF, ANN, SVM, C4.5, and NB) have 
been employed to create a landslide susceptibility 
map for the Rize province. The performance of the 
models was assessed using the ROC curve and sta-
tistical values (sensitivity, specificity, accuracy, and 
kappa index). The results indicate that the XGBoost 
model outperforms other machine learning models 
in terms of accuracy and performance, making it the 
most effective model for creating landslide suscepti-
bility maps.

Upon examining the performance of the models, 
it is observed that some models produce better re-
sults for the specific factor compared to others. The 
XGBoost model exhibits the highest Area Under the 
Curve (AUC) value (0.941) and demonstrates the best 
results compared to other models. A high perform-
ance of this model is attributed to its ability to capture 
complex nonlinear relationships between features. 
Additionally, the XGBoost model presents the high-
est accuracy, sensitivity, and specificity rates accord-
ing to the ROC curve and other statistical evaluations. 
Other models, such as random forest, artificial neural 
network, and support vector machine, also demon-
strate good performance. In particular, the RF model 
attracts attention with an AUC value (0.934) and ac-
curacy rate close to the XGBoost model. While ANN 
and SVM models provide lower accuracy and sensi-
tivity rates, they still offer sufficient information. The 
C4.5 decision tree and naive Bayes models exhibit 
lower performance compared to other models, with 
lower AUC values and accuracy rates. However, it 
should not be overlooked that these models may be 
preferred due to their simpler structures and lower 
computational requirements. One of the reasons for 
a higher accuracy rate of the XGBoost model is the 
application of methods that prevent overfitting and 
promote regularization, which reduce the model’s 
complexity and increase its generalization ability. 
Moreover, XGBoost employs gradient boosting tech-
niques that iteratively correct errors in decision trees, 
enhancing the model’s performance.

The average merit values of landslide conditioning 
factors play a significant role in the analysis of this 
study. These values help illustrate the impact of each 
factor on landslide susceptibility and can be used as 
an additional criterion for evaluating model perform-
ance. Factors with high average merit values should 
be considered as the most influential factors affecting 
model performance.

In a previous study conducted by Reis et al. (2012), 
the frequency ratio and Analytical Hierarchy Process 
(AHP) methods were used to create a landslide sus-
ceptibility map for the Rize province. Compared to 

this study, machine learning models provide results 
with higher accuracy. These models, especially XG-
Boost, offer higher accuracy rates and performance 
compared to the methods employed in previous stud-
ies. Therefore, in regions with a high landslide risk 
such as Rize, the use of machine learning models is 
an essential tool for creating more accurate and reli-
able landslide susceptibility maps. Machine learning 
models such as XGBoost, known for their remarkable 
accuracy, play an important role in assisting local and 
regional governments, urban planners and engineers 
in mitigating landslide risk, developing infrastructure 
initiatives and formulating policies related to natural 
disasters. Although these models were developed in 
this study based on data from Rize province, their 
adaptability to different and new datasets makes them 
applicable in various regions. This research provides 
a remarkable example of comparing ML models in 
the creation of landslide susceptibility maps on an 
important dataset. The excellent performance of 
these ML models on the large dataset used in this 
study constitutes an important contribution to the lit-
erature on landslide susceptibility research. However, 
even with the use of high-performance computing re-
sources, some ML models face limitations when deal-
ing with extensive datasets within a reasonable time 
frame. While the results of this study highlight the ef-
fectiveness of five different machine learning models 
in assessing landslide susceptibility, further research 
using different datasets is necessary to validate these 
findings. Moreover, it is crucial to benchmark these 
models against alternative ML techniques to establish 
the most suitable one.

CONCLUSION

This study compared six different ML models 
(XGBoost, RF, ANN, SVM, C4.5, and NB), for 
which performance and validation comparisons have 
not previously been performed in landslide suscepti-
bility modelling studies. A total of 13 conditioning 
factors were selected to create the landslide suscep-
tibility models. These factors are: distance to roads, 
lithology, drainage density, slope, TWI, soil depth, 
distance to rivers, land use, NDVI, plan curvature, el-
evation, aspect, and profile curvature. The effects of 
these factors on the model were calculated using the 
ReliefF method, and it was determined that all fac-
tors influenced the model. The performance and vali-
dation of the models were compared with the ROC 
curve and various other statistical methods. As a re-
sult of the comparison, the performance and predic-
tion capabilities of all models are acceptable. Because 
of its better performance and validation results, the 
XGBoost model is superior to the other five models. 
Comparing these and similar ML models is essen-
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tial to reveal the capabilities of the models. Future 
research should focus on improving the accuracy and 
reliability of landslide susceptibility maps by further 
improving existing machine learning models or ap-
plying new methods and techniques. In this context, 
increasing the number of this type of study will ben-
efit decision-makers making land use plans.
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