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Abstract. The numerical simulation of rock and soil mass in hydropower engineering will consume a lot of 
human resources and electric power required for simulation. A rapid and efficient establishment of a rock and 
soil numerical model is urgent for numerical simulation. The equivalence of the material grading curve is an 
essential criterion for the accurate simulation of geotechnical material by the discrete element, and particle size 
calculation is the premise of the grading curve. The discrete element of joint particles can accurately simulate 
the geotechnical particles in reality, but it is difficult and time-consuming to calculate the particle size of joint 
particles. This paper presents a neural network calculation model for joint particle size, that is, the joint particle 
size calculation model (JCM), quickly estimating particle size. The results show that the neural network model 
with 3–5 circle balls and 11–13 hidden neurons can obtain the gradation curve with a good coincidence degree. 
The model significantly reduces the calculation time. This paper establishes a joint particle database, which 
provides standard data for simulation and substantially improves simulation efficiency. The database enhances 
the comparability and standardization of research and makes research results more universal. The research 
significantly reduces computers’ human resources and power consumption in numerical simulation.
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Introduction

Using numerical simulation methods to study 
geotechnical engineering and geological engineering 
problems encountered in hydropower engineering 
construction can significantly reduce research costs 
compared with field and laboratory tests. Using the 
corresponding numerical simulation methods to build 
a numerical model can quickly and dramatically re-
duce computing time and the consumption of power 
resources in computer operation, as well as further re-
alize green development. Therefore, a rapid and effi-
cient establishment of a numerical model of rock and 
soil requires geotechnical and geological engineering 
numerical simulation.

The primary purpose of numerical simulation is to 
use the simulated rock and soil mass to be equivalent 

to the natural rock and soil mass. The stress-strain and 
deformation-displacement can reflect the field by ap-
plying force on the simulated rock and soil material.

Numerical simulation methods include the finite 
element method (Fakher, Hosseini, Hashemi 2020), 
the boundary element method (Palade et al. 2020; 
Coox et al. 2017), and the discrete element method. 
The discrete element simulation method (Ghodki et 
al. 2019; Izard et al.  2020; Garcia-Archilla, Novo 
2020) can reasonably simulate a significant deforma-
tion problem of granular bodies, cracks (Nitka, Tejch-
man 2020), and other structures under stress. Because 
of the flexible and fast characteristics of circular par-
ticle discrete elements, many researchers have widely 
used circular particle discrete elements.

Circular particle discrete elements can simulate 
various hydraulic structures, geological bodies, soils 
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and rock, and seepage calculation (Fakhimi 2009; 
Sun 2016). A comparison was conducted between 
the experimental and numerical simulation results to 
evaluate the model’s accuracy and reliability. Rocks 
and soil are made up of many particles mixed (Fig. 1a 
and b). A joint particle can simulate a complex parti-
cle (Fig. 1c). Joint particles (Fig. 1c) are non-circular 
particles formed by combining multiple elementary 
particles (typically circular particles) through specific 
geometric relationships. These circular particles can 
be arranged in various configurations to create joint 
particles with diverse and complex shapes. By adjust-
ing the size, arrangement, and geometric relationships 
of the elementary particles, researchers can more flex-
ibly construct a wide range of granular systems (Sun, 
Huang 2022), enabling the generation of soil struc-
tures that meet specific requirements (Fig. 1a and b). 
This approach allows for a more accurate representa-
tion of real soil characteristics. By employing realis-
tic joint particles in numerical simulations, the preci-
sion and applicability of modelling soil mechanical 

behaviour can be significantly enhanced. The more 
particles are used, the higher the simulation accuracy 
is (Sun 2018).

A joint particle simulates field materials by need-
ing strain and stain consistency in the mechanics’ 
process (Fig. 1e). The consistency of the results is 
achieved by adjusting the mechanical parameters in 
past research. However, the last result consistency, 
for example, stress/strain and displacement/deforma-
tion, is not factual consistency and does not mean the 
consistency of the materials, because the result is ob-
tained through a complex mechanical operation. The 
factual consistency means that all simulation proc-
esses are precisely equivalent to reality. The materials 
equivalence is the first step, including the particle size 
and particle grain size distribution.

The particle size is of great significance in the be-
haviour of particulate materials and numerical simu-
lations. Adesina et al. (2025) found that the particle 
size ratio significantly affects the mechanical prop-
erties of gap-graded granular assemblies. It behaves 

Fig. 1 Joint particle simulating rock/soils and the equivalence principle: (a) coral rock: dark places are coral skeletons, 
and the coloured ones are fillings between them; (b) skeletons and fillings boundary, the blue part is chosen to be studied; 
(c) different numbers of spherical particles simulating one filling, the quantity is 1, 5, 10, 50, 100, 500 and 1000; (d) dif-
ferent diameter ball filling; (e) ball discrete element simulation of soil tensile crack failure to obtain strain and stress; (f) 
gradation difference of the ball and joint particle discrete element simulates particle; (g) the rotation process of calculating 
the particle size
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differently under different fine particle contents and 
has different effects on internally stable and unstable 
assemblies. This is consistent with the conclusions of 
Fatemeh et al. (2024) regarding the influence of the 
particle size ratio on shear strength when studying bi-
nary granular soils. Mohammad and Abouzar (2025) 
conducted direct simple shear tests through discrete 
element simulations and pointed out that the particle 
size and specimen size can affect the stress path, peak 
and post-peak shear strengths (Mohammad, Abouzar 
2025). Reinecke et al. (2023) studied and found that 
the particle size affects the focusing and separation 
effects in serpentine microchannels. The equilibrium 
trajectories of particles with different sizes are differ-
ent, indicating that accurate particle size calculation 
is crucial for the accuracy of simulation results. In 
discrete element simulations, particle size calculation 
is a prerequisite for obtaining the equivalence of ma-
terial grading curves and is indispensable for accu-
rately simulating the characteristics of geotechnical 
materials. These studies provide important bases for 
a deeper understanding of particulate material behav-
iour and the optimization of numerical simulations.

The gradation of the site rock and soil mass is the 
same as that of the simulated rock and soil mass, the 
essential standards to ensure that the material simula-
tion results are consistent with the actual rock and soil 
mass. To achieve helpful equivalence between the 
two, the gradation curves of the two should coincide. 

Much research uses circle diameter as the joint 
particle size to calculate the gradation curve, which is 
seriously wrong, as shown in Fig. 1f. The two grada-
tion curves of circle diameter and joint particle width 
are different. There is no suitable method to calculate 
the particle size of joint particles, and the rotary par-
ticle size calculation process is very complex, time-
consuming, and challenging. The research aims to get 
particle size quickly by the neural network.

Mohammadkhanifard, Zad (2024) used the dis-
crete element method to simulate the interaction 
between dynamic anchors and particles of different 
shapes and sizes and analyzed the pullout capacity of 
the anchors. However, this method faces certain chal-
lenges. For example, the computational load is high, 
and the processing of particle shapes and sizes affects 
the accuracy of the results. When Reinecke et al. 
(2023) simulated the behaviour of particles in micro-
channels, they needed to consider the interaction be-
tween particles and the fluid as well as the influence 
of the channel geometry, resulting in complex cal-
culations. The particle size calculation of composite 
particles (Sun, Huang 2022) is a crucial prerequisite 
for DEM calculation. It has been possible to accurate-
ly calculate the particle size of composite particles 
(Sun, Huang 2022). The method used to calculate the 
joint particle size is the Rotation Calculation Model 

(RCM) (Sun, Huang 2022). However, when dealing 
with a large number of particles using RCM model, 
a significant amount of calculation time is required. 
Therefore, new calculation methods for the particle 
size of composite particles need to be considered. 
When simulating geotechnical engineering problems, 
multiple factors should be comprehensively consid-
ered, and the discrete element simulation method 
should be optimized to improve simulation efficiency 
and accuracy. Kishida et al. (2025) and others de-
veloped a machine learning-based surrogate model 
RNNSR to address a high computational cost of dis-
crete element simulations and extended it to simulate 
the mixing and separation of binary-sized particles, 
improving the calculation speed.

Therefore, the primary purpose of this paper is to 
reduce the calculation difficulties and save the calcula-
tion time of the particle size of joint particles. Machine 
learning (Samalavicius et al.  2024) and neural net-
work computational methods (Karamut, Binal 2024; 
Timurkutluk et al. 2023) are essential approaches for 
rapidly solving complex parameters and addressing 
engineering challenges (Bilgilioglu 2023). This study 
proposes a neural network model to directly calculate 
the particle size of joint particles by the parameters of 
compositing ball particles. A standard database of joint 
particles was established, including parameters such as 
particle size of joint particles. At the same time, we 
keep the database open. Future researchers can calcu-
late the particle size of joint particles directly according 
to elementary particles’ parameters if they need more 
involved and different particles. The database and the 
neural network model will significantly simplify the 
workload of scientific researchers. Moreover, they 
enhance the comparability and scientificity of varying 
calculation models and research.

Establishment of neural network 
model and database: Joint particle 
size Calculation Model (JCM)

Database establishment

A spherical discrete element is an essential branch 
of discrete element simulation, and many research 
results have emerged. We use many particles to sim-
ulate soils and rock. The greater the number is, the 
closer the external geometric shape to the particles in 
reality is (Jarrar et al. 2020). The digital approach to 
particle packing is established by digitizing particle 
shapes and pack space. The DEM (discrete element 
method) particles can accurately simulate the actual 
three-dimensional sand particles’ shape, carry out the 
crushing simulation experiment and obtain numerical 
results agreeing with the experimental results (Jarrar 
et al. 2020).
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However, the more simulated balls the researchers 
used, the more time it took. The current calculation 
cannot use a too large number of spheres to simulate 
particles.

The joint particles are composed of multiple circu-
lar particles. The parameters of each circular particle 
include the centre and the radius, and these particles 
need to overlap. The usual method randomly gener-
ates these parameters in a specific area to determine 
the superposition. Consider forming a joint particle if 

Fig. 2 Flow chart of joint particles generation: (a) The formation process of joint particles; (b) An example of superim-
posed particle centre zone; (c) Symbolic representation of each region; (d) Examples of joint particles composed of 3, 4, 
5, and 6 circles. (xi, yi, ri) is a circular particle whose radius is ri at the centre (xi, yi), i = 1, 2,3, …., n. Ω1 and Ω1′ is the first 
circular area. Ω2 is the circular area with (x1, y1) as the centre and r1 + r2 as the radius. Ωn′ is a circular area with (xn, yn) as 
its centre and rn as its radius. Ωn″ is the ring of the centre (xn, yn) of the nth particle. Ωn is the sum of circular areas with 
(xi, yi) as the circle and ri+ rn as the radius, i = 1, 2, …, n-1

any particle co-occurs with at least one other particle. 
Because complete randomness cannot guarantee par-
ticle superposition, circular balls are generated con-
tinuously. It takes much time to judge and develop 
continually, and it is challenging to generate a large 
number of joint particles.

The steps of joint particle generation are as fol-
lows: (1) generate random parameters to generate a 
random circle 1. The parameters are the centre and 
the radius of the circle, (x1, y1, r1), and the circle area 
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Table 1 Three examples of the joint in the database
No. in 

database Particle image
Initial parameters Result

x y r Width Height Angle

3-100
0 0 2.39294

5.605 11.783 125.4782.068 -2.147 2.640
5.291 -4.113 2.695

4-1000

0 0 2.549

6.461 14.498 24.637
-2.635 -2.635 2.616
-2.858 -6.410 2.471
0.933 2.621 2.238

5-10000

0 0 2.619

8.138 12.442 99.122
2.493 2.815 2.337
0.019 2.796 2.022
3.846 -0.313 2.927
-3.039 0.611 2.571

is Ω1, as shown in Fig. 2a and b. (2) Generate the 
radius r2 of the following random circle 2 and ran-
domly determine a circle centre (x2, y2) in the region 
Ω2″, that is, generate the joint particles composed of 
two superimposed circles. (3) Generate the radius r3 
of the third random circle 3 and randomly determine 
a circle centre (y3) in the region Ω3″, that is, generate 
a joint particle composed of three superimposed cir-
cles. Subsequently, generate joint particles consisting 
of multiple particles by this analogy.

This paper establishes the joint particle database 
composed of 3, 4, 5 spherical particles. The database 
consists of 310000 particle data. Each particle param-
eter includes the centre and the diameter of the cir-
cular particle, the minimum width of the composite 
particle covering the length and width of the rectan-
gular, and the rotation angle of the rectangular. Table 
1 shows some examples of three composite particles 
in the database.

Joint particle size calculation model (JCM)

Currently, the computational cost of discrete ele-
ment methods is exceedingly high. During the mod-
elling phase of granular flow, it is necessary to cal-
culate a vast number of particles, particularly when 
determining the particle size distribution of compos-
ite particles. When dealing with tens of thousands of 
particles, this process becomes extremely time-con-
suming. Therefore, it is essential to explore and pro-
pose novel methodologies to address this issue.

Neural network models have achieved significant 
research breakthroughs in the field of Earth sciences. 
They are widely applied in earthquake prediction, 
where they learn from historical seismic data to iden-
tify precursors and predict the likelihood of seismic 
events. By analyzing seismic waveform data, these 
models enhance the accuracy of earthquake early 
warning systems (Mousavi et al. 2020). In climate 
prediction, neural networks are capable of handling 

complex nonlinear climate systems. For instance, 
deep learning-based models have been used to pre-
dict extreme weather events, such as typhoons and 
heavy rainfall, as well as long-term climate change 
trends (Ham et al. 2019). In hydrology, neural net-
work models are employed for river flow prediction, 
flood forecasting, and water resource management, 
significantly improving prediction accuracy (Kratzert 
et al. 2018).

This study leverages neural network models to 
establish a neural network model for predicting the 
particle size distribution of composite particles. 
This paper presents a neural network machine learn-
ing computing model. A neural network calculation 
model for joint particle size, that is, joint particle size 
calculation model (JCM) is established.

Each neuron node in the neural network accepts 
the output value of the upper layer neuron as the input 
value. The neuron node of the input layer will directly 
transfer the attribute value to the next layer (hidden 
layer or output layer) (Adil et al. 2022).

In a multi-layer neural network, there is a func-
tional relationship between the output of the upper 
node and the next node’s input, called the activation 
function (also known as the excitation function) (Oli-
mov et al. 2020).

The particle size of joint particles is studied in this 
paper, shown in Eq. (1). The input data are the centre 
and the radius of each circular particle as X in Eq. (1). 
The final output data are the particle size Y of joint 
particles, and the radius of joint particles is a number. 
Therefore, the dimensions of matrix Am and Bm are  
1 × km-1 and 1 × 1, and the dimensions of intermediate 
matrix Aj and Bj are kj × kj-1 and km × 1.
	 Y = σ (C × Em–1 + D)	 (1)

where C = [cm-1cm-2…cm-km], C is the calculation re-
sult of each step; EM = σ(AM × EM-1 + BM), A is the 
weight matrix; D = [d]; AM = [wM

IJ], I = 1, 2, 3, …, kM,  
J = 1, 2, 3, …, kM-1; w is the weight; X = [x1x2…xn]’, 
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X is the original input data, n is the number of initial 
data, E0=X; BM=[bM

1b
M

2…bM
kM]’; M = 1, 2, 3, …, m; 

B and D are the linear terms; σ is the activation func-
tion, and m is the neuron number of the hidden layer.

It is the multiple multiplications of matrices and 
the weight adjusted continuously through the feed-
back of the results. Finally, minimize the mean square 
error. Save the weight matrix with the smallest mean 
square error. Directly calculate the result data accord-
ing to the weight matrix and the input data (Carpen-
ter, Grossberg 1988; Rivas et al. 2021), not through 
training again.

The two-layer neural network model is selected in 
the calculation, including a hidden layer and an output 
layer. The centre of the first circle is (0, 0), the input 
data are Eq. (2), the particle size formula is Eq. (3), 
and the activation function is Eq. (4). Figure 3 shows 
the neural network model. The number of neurons in 
the hidden layer ranges from 8 to 40. The particle size 
formula for a joint particle composed of 4 balls with 
13 hidden layer neurons is Eq (5).

	
	 	 (2)

	 	 (3)

	 	 (4)

	 	 (5)

where m is the neuron number of the hidden layer; n 
is the number of circles making up the joint particle.

After training, obtain the model. Calculate the par-
ticle size of the joint particles by inputting the centre 
coordinates and radius into the model. There is a spe-
cific error between the particle size calculation results 
of the model and the actual particle size. So, the mean 
square error evaluates the model. Eq. (6) is the for-
mula of the mean square error. The smaller the mean 
square error is, the higher the calculation accuracy of 
the training model is. The mean square error is

	 	 (6)

where Xi is the ith value calculated by the model, xi is 
the ith actual value, and s is the amount of data.

Calculation process, results, and 
discussion

In this paper, many parameters are used to study 
the establishment of the database and obtain relevant 
laws. The specific steps are as follows: (1) Select 
the parameters needed in this paper as input data ac-
cording to the database’s parameters. (2) Establish 
the neural network model of joint particle size. (3) 
Study the established model, including three conver-
gence modes, the number of circle particles of joint 
particles, and the number of hidden neurons. Finally, 
obtain the optimal convergence mode, the number of 
circle particles, and the number of hidden neurons.

Parameters

The calculation parameters are shown in Table 2.
Three kinds of convergence modes are adopted. 

Levenberg-Marquardt backpropagation convergence 
mode (Moayedi et al. 2020; Khatti et al. 2019), called 
Lm., Bayesian regularization backpropagation con-

Fig. 3 Neural network model for joint particle size

Table 2 Parameters of the neural network model for joint 
particle size

Types of composite 
particles

Number of circle particles 3–12
Number of joint particles 10

Hidden layer
Number of hidden neurons 8–40
Number of hidden layer types 33

Convergence con-
trol parameters

Timestep of learning (s) 0.05
Maximum training time (s) 3000
Minimum mean square error 0.0001
Maximum training time (s) 60

Number of neural network models of a single joint 
particle 20

Number of convergence mode 3
Total number of neural network models 19800
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vergence mode (Pinzolas et al. 2006), called Br., and 
scaled conjugate gradient backpropagation conver-
gence mode (Khadse et al. 2017; Nataj, Lui 2020), 
called Scg.

The input parameters are the centre and the radius 
of circle balls compositing the joint particle, and the 
output result is the particle size of the joint particle.

Convergence mode and number of circle particles

The initial weights are randomly assigned when 
establishing the neural network training model. Ter-
minate the training when reaching the minimum error 
or the total number of training times or training time. 
The initial weights affect the result accuracy, and the 
artificial assignment of the initial weights may not be 
the best. Therefore, this paper’s solution is that each 
model carries out many assignment pieces of training 
to find the minimum error model and initial weights. 
At last, obtain an excellent training model as the final 
one.

Fig. 4 Mean square error of joint particles with 8-40 neurons in three convergence modes:
(a) Mean square error of particle size under Lm convergence mode; (b) Mean square error of particle size under Br con-
vergence mode; (c) Mean square error of particle size under Scg convergence mode; (d) Mean square error of three-ball 
joint particle size under Lm, Br, and Scg convergence modes. The mean square error in the Figure is from Eq. (6). Lm is 
the Levenberg-Marquardt backpropagation. Br is the Bayesian Regularization backpropagation. Scg is the Scaled conju-
gate gradient backpropagation

In this paper, from the 20 training models of each 
joint particle under three convergences, the model 
with the minimum mean square error is selected as 
the joint particles’ output model. According to Eq. 
(6), the final calculated mean square error results are 
listed in Fig. 4.

The mean square error decreases as the number of 
hidden neurons increases, as shown in Fig. 4a, b, c. 
The mean square error of 3–6 circle particles decrea
ses gradually with the rise in the number of hidden 
neurons when the Lm mode is adopted, as shown in 
Fig. 4a. From seven circular particles, the error fluc-
tuates.

Under the Br convergence mode, some mean 
square errors keep a relatively stable enormous value 
(10-ball curve shown in Fig. 4b) with the increase of 
the number of hidden neurons, as shown in Fig. 4b. 
Some mean square errors even tend to increase (12-
ball and 11-ball curves shown in Fig. 4b). The mean 
square error increases with the increase of circle balls, 
and from six circle particles, the error fluctuates.
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From Fig. 4c we can see that the mean square error 
decreases with the increase of the number of hidden 
neurons and the decrease of circle particles when the 
Scg convergence model is adopted. This rule is well 
maintained. From Fig. 4d we can see that the error 
decreases with the number of hidden neurons in the 
three modes when the three circles are combined. The 
mean square error in Lm and Br modes is almost co-
incident, and the mean square error in the Lm mode 
is slightly smaller than that in the Br mode, and the 
mean square error in the Scg mode is larger.

It indicates that the increase in the number of neu-
rons under the same training parameters does not nec-
essarily bring better training results. As the number 
of circles increases, the mean square error increases 
gradually. When the number of balls is more than 6, 
the error is relatively large. So, the number of circle 
balls in [3, 6] is acceptable. If the number of circle 
balls is within [3, 5], Lm and Br convergence modes 
perform better.

Therefore, when the number of circle balls is in 
the range of [3, 5] and the Lm convergence mode is 
applied, the neural network model can reasonably 
calculate the joint particles’ particle size.

Number of hidden neurons

From the previous part we see that the model’s ac-
curacy is the best when the number of circle balls is in 
[3, 5] and in the convergence mode of Lm. Therefore, 
it is necessary to further study the optimal number of 
hidden neurons. From Fig. 4a, b, and c we see taht the 
number of different circle balls in [3, 5] shows con-
sistent accuracy characteristics. Therefore, the joint 
particles of three circle balls are selected for the study 
in this part. The models with 8-40 neurons train 20 
times, and the smallest mean square error is selected. 
The accuracy of the calculation results is shown in 
Fig. 5. The joint particles’ size is taken as the hori-
zontal coordinate-axis X, and the particle size from 
the model is taken as the vertical coordinate-axis Y. 

The scatters diagram is in Fig. 5b, c, d, e, and f, and 
each diagram has 10000 points.

From Fig. 5a we see that the mean square error 
decreases when the number of neurons increases. 
The mean square error decreases significantly when 
the number of neurons changes from 10 to 11. At the 
number of 11–19 neurons, the mean square error de-
creases gradually, weakening the decrease. However, 
when the number of neurons is greater than 19, the 
decrease in the mean square error is not significant. 
From Fig. 5b, c, d, e, and f we see that as the number 
of neurons increases, the scatter points are more con-
centrated to the diagonal, indicating that the error 
gradually decreases (as shown in Fig. 5a).

Model accuracy under the gradation curve

When the neural network model calculates the par-
ticle size of joint particles, there is a specific error be-
tween the results and the actual particle size, as shown 
in Table 3. Table 3 shows the first 10 joint particles 
composed of 4 circle balls in the database supplied 
by this research. Error histograms normal distribution 
curve of 10000 joint particles under three convergence 
modes is shown in Fig. 6. We can find the error dis-
tribution conforms to the normal distribution. Many 
joint particles constitute the real rock and soil mass. 
In the simulation process, the evaluation standard of 
the simulation effect is the maximum coincidence of 
the simulation material gradation curve and the natural 
material gradation curve. Therefore, the particle size 
error of many single joint particles may not affect the 
final simulated soil gradation curve.

The formula of soil particle gradation is:

	 	 (7)

where δi is the percentage of the cumulative mass of 
particles whose particle size is less than Di in the total 
mass, qj is the quality of the particle whose size is in 

Table 3 Particle size and error calculated by neural network models under three convergence modes of joint particles 
composed of four circle balls

No. in data-
base

The real value 
of particle size

34-13-1-10 35-13-2-12 36-13-3-18
Lm Error % Br Error % Scg Error %

10 6.75 6.69 0.84 6.35 5.89 6.57 2.58
11 6.92 6.90 0.26 6.39 7.58 6.87 0.62
12 9.38 8.99 4.18 9.16 2.39 9.80 4.48
13 7.39 7.41 0.25 7.72 4.38 7.89 6.77
14 7.23 7.05 2.47 6.79 6.13 6.46 10.63
15 7.65 7.64 0.07 7.41 3.11 7.52 1.63
16 6.02 6.05 0.44 6.21 3.07 6.18 2.62
17 9.29 8.61 7.30 8.87 4.49 7.92 14.69
18 7.79 7.79 0.01 7.48 4.00 7.43 4.58
19 6.67 6.70 0.36 6.91 3.54 6.62 0.86
20 6.86 7.48 9.00 7.57 10.23 7.47 8.80
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Fig. 5 The curve of the mean square error and neuron number of joint particles composed of three circle balls: (a) The 
mean square error curve between the actual particle size and the particle size calculated by the neural network model with 
8-40 neurons in the Lm convergence mode; (b), (c), (d), (e), and (f) The scatter diagram of actual particle size and particle 
size calculated by the neural network model obtained from 11, 13, 15, 17, and 19 neurons, where the range error between 
red lines is between [0.95, 1.05] and the range error between green lines is between [0.9, 1.1]

Fig. 6 Error histograms normal distribution curve under 
three convergence modes

(Dj-1, Dj], and Q is the total quality of the particle.
The calculation steps of the gradation curve are as 

follows: (1) 2000 joint particles are randomly select-
ed from 10000 joint particles composited of 3-5 cir-
cle balls. Calculate the gradation according to Eq. (7). 
The particle size was the actual particle size. (2) In 
the selected 2000 joint particles, calculate the particle 
sizes of five training models with the neuron numbers 
11, 13, 15, 17, and 19. (3) Using the 2000 particles’ 
size calculated by the model, obtain the gradation 
according to Eq. (7). (4) Draw the two distribution 
curves calculated by the actual particle size and the 
calculated size from the neural network model, as 
shown in Fig. 7, and draw the model weights in the 
form of grey patches in a1-c4.

The following weight range is small: the 7th and 
10th neurons in Fig. 7a1-11, the 5th and 12th neurons 
in Fig. 7a2-13, the 4th and 11th neurons in Fig. 7a3-15, 
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Fig. 7 The gradation curve and grey patches of weight: (a), (b) and (c) are the grading curves of 2000 particles consisting 
of 3, 4, and 5 balls, respectively. The horizontal axis is the joint particle size. The vertical axis is the gravitation percent-
age (%). The curve of the factual size of 2000 joint particles is the ‘original’ calculated by the RCM model (Sun, Huang 
2022). Other curves are the results of calculations using the JCM model (this research). Figure number explanation: xi-j is 
Figure No. of grey patches of model weight with j neurons. For example, a1-11 is the weight grey patches of the 3 circle 
balls model with 11 neurons, and b1-13 is the weight grey patches of the 4 circle balls model with 13 neurons. In the grey 
patches, the horizontal axis represents q in Eq.(3), and the vertical coordinate represents the number of neurons
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the 4th and 15th neurons in Fig. 7a4-19, and the 1st and 
11th neurons in Fig. 7b1-13. The neurons’ weights in 
Fig. 7c2-13 are small except for the 7th neuron. Some 
hidden neurons have a short range of weights, indicat-
ing that the neurons have little effect on the results, but 
the specific meaning of the neurons is not exact.

The following weight range is enormous: the 2nd 
and 6th neurons in Fig. 7a1-11, the 3rd and 11th neu-
rons in Fig. 7a2-13, the 4th and 10th neurons in Fig. 
7b1-13, and the 7th neuron in Fig. 7c2-13. Similarly, 
the weight range of some neurons is extensive, in-
dicating that these neurons have an essential signifi-
cance, and the specific meaning represented by these 
neurons is not exact.

From the grey patches of weights, the colour dif-
ference of columns 1, 4, 7, 10, 13, and 16 is small, 
indicating that the weight is near 0, and the corre-
sponding input data of this column is the radius of 
a single circle ball. The results show that the circle 
ball’s radius has a lower effect on the joint particle 
size than the circle ball’s centre position. With the 
increase of the number of circle balls, the weight 
shows a relatively significant change, shown as fol-
lows: the volatility increases with the absolute value 
of the weight increase, and the influence of the radius 
of the single circle on the radius of the joint particles 
also increases. Therefore, the number of circle balls 
cannot be too large, and between 3 and 5 is best.

From Fig. 7a, b, and c we can see that the points 
concentrated with the circle ball number increase, 
more concentrated in one same size. The gradation 
curve gradually becomes vertical. The coincidence 
degree between the joint particle gradation curve 
composed of four circle balls and the original is the 
best. The fitting degree of the model containing 13 
neurons in four circle balls is the best, and the dif-
ference between the absolute values of the weights is 
also small.

Based on the above analysis, it can be concluded 
that the fitting degree of the model with 13 neurons 
and 4 circle balls is relatively good, and the difference 
between the absolute values of the weights is small.

A neural network calculation model

The neural network calculation model with 4 cir-
cle balls and 13 neurons meets the requirements of a 
better and faster calculation for simulating joint par-
ticles. The weight of the neural network model is as 
follows, referring to Eqs. (2)–(5):
	 Y1×1 = C1×13 [σ (A13×10 × X10×1 + B13×1)] + D1×1

The four circles form a joint particle. Every circle 
has a centre (x, y) and a radius r. The first circle has a 
circle of (0,0) and is not used as input data. One joint 
particle has 10 raw numbers, and X is 10 × 1.

A = 0.0001 × 
[144 32 281 14 334 -329 30 -394 -193 44 
184 -338 -135 206 127 519 73 617 -220 -4 
125 145 -114 179 -538 -339 189 280 691 2 
248 509 1244 392 -331 -599 357 306 1343 -134 
-101 307 145 -151 -231 -108 -92 -407 -189 13 
-56 -76 127 -48 -436 68 -153 562 -336 -28 
108 -315 -152 162 349 -293 151 312 616 -40 
52 -3 -245 98 592 50 210 -592 469 55 
117 -84 304 35 206 -513 0 -38 -76 36 
245 -1153 450 43 391 -220 212 -1033 548 80 
75 22 -25 121 -412 -326 83 385 414 6 
91 -133 173 109 -210 -473 13 485 141 38 
42 99 267 -79 -8 334 -126 -168 -816 32 

]
B’ = 0.0001*[6200 5776 5682 6180 -5926 -6164 5931 5962 

6189 6484 6077 6123 7300]
C = 0.0001*[7786 2829 4654 -84 8825 9092 4266 4499 -8674 

-78 -11379 7065 -2706]
D = 570.6192

Calculation time effect comparison

Use the established neural network model in this 
research, namely the JCM model, to calculate the 
size of the joint particles. The original calculation ap-
proach was the RCM model as proposed in the lit-
erature (Sun, Huang 2022). The number of spherical 
balls ranged from 3 to 12. The computation time of 
both methods was monitored. The number of neurons 
selected is shown in Fig. 7 as follows: 11 neurons are 
for the 3 circle balls model (Fig. 7a1-11), 13 neurons 
are for the 4 circle balls model, 11 neurons are for the 
5 circle balls model (Fig. 7c1-11), 19 neurons are for 
the 6 circle balls model, and 13 neurons are for 7–12 
circle balls model. Two methods are used to calcu-
late the size of 2000 joint particles. The time taken is 
shown in Fig. 8. With the increase of circle balls, the 
calculation time of the original calculation method is 
gradually increasing.

Fig. 8 The calculation time of 2000 joint particle sizes by neu-
ral network model method and direct calculation method
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The calculation time of JCM is not directly related 
to the number of circle balls, and the time consumed 
is minimal and stable. The calculation time ratio of 
the two methods is [430000, 1450000]. The neural 
network model method has a good time efficiency.

Conclusions

The neural network model with the 3–5 circle 
balls and 11 and 13 neurons can take very little time 
to obtain a better coincidence effect of the gradation 
curve. The neural network model with the best fitting 
degree is the model of 4 circle balls and 13 hidden 
neurons.

We established a joint particle size database of 
3–12 circle balls. Simultaneously, the neural network 
calculation model with 4 circle balls and 13 neurons 
meets the requirements of a better and faster calcula-
tion for simulating joint particles.

The radius of circle balls has less influence on the 
particle size of joint particles than the centre of circle 
balls. With the increase of single-circle balls, the time 
consumed by the original calculation method of joint 
particles gradually increases. The calculation time 
of the neural network model is not affected by the 
number of circle balls and maintains a low constant 
value. The established database and neural network 
model can significantly reduce human resources in 
research and the power cost consumed by computer 
operations.

The specific meaning of hidden neurons with rela-
tively large and small weights is not exact and is re-
quiring further research.
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