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Abstract Sediment cores, collected from fourteen stations along the eastern coast of the Baltic Sea during
cruises of different research vessels between the years 1979-1999, were dated using natural 2'°Pb (radioche-
mistry and beta spectrometry). Two additional cores collected close to Lithuanian coast were dated using natu-
ral ?'°Pb and artificial fallout radionuclide '*’Cs (direct gamma ray spectrometry). For five sites the sedimenta-
tion rates were found to be relatively high — between 2.5 and 6.5 mm/year. At most of the sites the sedimentation
rates were relatively uniform — between 1.0 and 2.0 mm/year. One site showed low sedimentation rate
(0.3 mm/year). For most of the sites the ?'°Pb activity versus depth profile was regular, and in consequence the
219Ph dates were relatively unambiguous. Some sites were notable for irregularities in the ?!°Pb activity versus
depth profiles, indicating significant variations in the sedimentation rate during the past 120 years and especially
after 1960. Together with high resolution dating the cores were also analysed for trace elements and then
multivariate statistical analysis was carried out. The influence of clay minerals on element occurrence in studied
sediments was obvious. The factor analysis showed that anthropogenic load in cores could be different despite
that they were located very close to each other. The trace element concentrations in the sediment core taken
from aleuritic-pelitic mud were more evenly distributed and can be explained by better sorting of sediments. The
data obtained by radioisotope dating and trace elements methods showed to be in sufficiently good accordance
for the eastern part of the Baltic Sea.
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INTRODUCTION by radioisotope methods and determining the

distribution patterns of trace elements. Some of

During the recent years there has been renewed focus
on the Baltic Sea. Not only because the Baltic is one
of the world’s largest estuarine systems but also
because it is the area of focal importance for 15
countries as a transportation channel, recreational area
and fishing ground.

The Lithuanian scientists have been investigating
the Baltic Sea as far as their potential allowed.
Participation in various projects of recent years
resulted in efforts of more detailed examination of
cores with high resolution sampling and assessing

material presented in this study had been collected
in the years of Soviet power. Yet the research
possibilities then were limited — methods and part of
equipment were insufficient to carry out
investigations on a modern level. The recently
introduced gamma and beta spectrometric systems
allowed examining cores with higher resolution by
new methods, to unify the methodical interpretation
of all available core material and to determine the
rates of sedimentation on the basis of cores obtained
in 1978-1999.
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The main goal of this study was to find out the rates
of recent sedimentation in the eastern part of the Baltic
Sea on the basis of radioisotope methods and to
characterise the sediment cores — especially the ones
collected close to the Lithuanian coast — according to
the distribution patterns of trace elements and basing
on factor analysis. Moreover, the present study is the
first one dealing with the factor analysis of the
geochemical data of sediment cores taken close to the
Lithuanian coast. Together with radioisotope dating it
gives a closer view onto relationships between the
natural and anthropogenic factors influencing
sedimentation peculiarities.

ENVIRONMENTAL AND GEOLOGICAL
SETTINGS

The Baltic Sea is a brackish-water body with a surface
salinity gradient from c. 1%o in the north to c¢. 10%o in
the south. It consists of a number of basins, including
the gulfs of Bothnia, Finland and Riga as well as the
Baltic proper. The study area is attributed to the Eastern
Baltic and is comprised of the gulfs of Finland and Riga
as well as the eastern part of the Baltic proper (Fig. 1).

The Baltic Sea covers an area of ¢. 400 thousand
km? and is characterised by large fluxes of river water
inputs and periodic inputs of more saline water from
deeper layers of the North Sea. It is a semi-enclosed
sea. The water exchange occurs through the narrow
Oresund and Store Bzlt, mainly driven by the sea-level
difference between the southern Kattegat and the
Southwestern Baltic (Wulff e al. 1990). The intervals
between major inflows of highly saline oxygen-rich deep
water are irregular, but such events occur
predominantly in autumn and winter. The circulation in
the Baltic Sea is not very pronounced, but there is a
cyclonic salinity distribution with high-salinity deep
water flowing inwards along the eastern coasts and
low-salinity surface water flowing out along the
Swedish coast. The main oceanographic feature of the
Baltic Sea today is the permanent salinity stratification
(Kullenberg 1981). The largest rivers discharging into
the Baltic proper are Vistula and Nemunas. A well-
stratified water column and sufficient supply of nutrients
leads to algal blooming in the central Baltic. Blooming
periods generate finely laminated sediments by settling
of larger flocks of nutrient remains. In the periods of
increased wind forcing (normal conditions), a relatively
thick and well-ventilated surface water layer is formed
with normal primary production. Particle transport to
the seafloor is then restricted and more homogeneous
sediments are deposited (Andrén et al. 2000).

The last deglaciation of the Baltic basin occurred
between c. 13 500 and 13 000 (Ringberg 1988) and 9000
1C yr BP (Andrén 1990) and its history thereafter has
been controlled by the interaction between isostatic
rebound and eustatic sea-level fluctuations caused by
climate change. The several freshwater and marine stages
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in the history of the Baltic Basin, following the end of the
Late Weichselian glaciation, have been distinguished. These
stages, e.g., Baltic Ice Lake, Yoldia Sea (consisted of two
freshwater phases with a short brackish-water phase in
between), Ancylus Lake, Initial Litorina Sea, Litorina Sea,
Post-Litorina Sea, Recent Baltic Sea, Present Baltic Sea,
recorded in the sediments lithostratigraphy and adjusted
to '*C dates are discussed in detail in many studies (Jensen
1995, Andrén et al. 2000).

For assessment of sediments in this study the short
gravity corers were available. Short cores could be
illustrative of only the last few hundred years of
sedimentation, reflecting mainly the changes over the
Present and Recent Baltic Sea stages. The trends of
those changes are overviewed in a number of papers.
Investigations of diatom assemblage in the Southern
Baltic coastal areas have shown evidence of the sea
eutrophication that have been dated to ¢. AD 1850-
1900 (Witkowski & Pempkowiak 1995). A significant
change during the last Baltic Sea stages is traced by a
shift from dominance by brackish-marine periphytic
taxa to principally planktonic taxa, interpreted as being
the effect of increased water turbidity in response to
increased nutrient availability (Andrén et al. 2000).
Since the turn of the century the P load entering the
Baltic Sea has increased by a factor 8, and the N load
by a factor 4 (Elmgren 1989). Significant indications
of eutrophication have been reported in the Baltic
coastal areas in recent decades, e.g., the increased
primary production, increased turbidity, altered benthic/
pelagic ratio, lower growth limit for phytobenthos and
hypoxia/anoxia in sediments, expanding areas of
laminated sediments, and elevated organic carbon
content of the uppermost sequence, whereas there are
only few reports of increased primary production,
alteration in phytoplankton species composition or other
changes in the open Baltic Sea (Elmgren 1989,
Bonsdorff et al. 1997). Alteration in the diatom
assemblage parallel to the changes in organic carbon
content, however, has been shown to be a natural
response to climatic influence and has previously been
recorded in the history of the Baltic Sea. Warm climate
seems to increase nutrient availability in the Baltic basin,
depending on increased upwelling or increased river
discharge. According to Elmgren (1989), the recorded
changes in freshwater input and wind stress are not
large enough to explain the anoxic conditions in the
deep water of the Baltic proper. The increase in input
of nutrients is likely to have taken place since AD 1950,
which supports suggestion on increased nutrient
availability in the Baltic coastal and even open waters
(Rosenberg et al. 1990).

Discussing trace elements in marine sediments it is
important to consider sources of sedimentation. It is
evident that terrestrial erosional transport and nutrient
productivity in surface waters are among main sources
of sedimentation. Airborne particle transport to the sea
is however an important source as well (Nriagu 1989).



METHODS

Short Niemisto-type or similar gravity corer (with inner
diameter of 54 mm) were used to take the sediment
cores from all the stations located mainly in the Eastern
Baltic during cruises of Estonian (R/V Arnold Veimer
in 1986, 1987, 1988), Latvian (R/V Livonia in 1992),
Lithuanian (R/V Véjas in 1999) and Russian (R/V 4ju-

Dag in 1978) research vessels. Most samples were
taken in 1989-1999. The total amount of cores taken
for lead-210 dating was 16; two cores (stations 21/01-
99 and 21/05-99) were also examined for trace
elements (Fig. 1).

Sediment cores were usually sliced onboard ship
into disks of different thickness (from 2 ¢cm in recent
cores to even 10-15 cm in earlier cores) and stored in
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Fig. 1. Study area with sampling sites and bathymetric data (Gelumbauskaité L.-Z. (Ed.) 1998). Situation around sampling

sites close to Lithuanian coast is shown in detail.
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plastic bags in the freezer room. After the cruise
termination the sliced sediment material was
weighed for wet weight, dried in an oven (at 45°C),
weighed again for dry weight, homogenised and
powdered in an agate mortar (for trace element
determinations) in the home laboratory. The samples
were then analysed for radionuclides and trace
elements.

Measurements of lead-210 activity in sediments
were performed by two methods. The activities of !°Pb
in earlier cores (1978-1992) were measured by low-
level beta counting of its daughter radionuclide 2'°Bi
after classical radiochemical separation of 2'°Pb carrier
from the sample material (Dusauskiené-Duz 1997,
Dusauskiené-Duz 1999). Radiochemical separation
was based on ion-exchange method using the anionit
EDE-IOP (CI- form). The prepared measuring forms
were usually stored for about 3 weeks to allow the
establishment of radioactive equilibrium between 2'°Pb
and ?'""Bi.

The cores of 1999 were examined by direct gamma-
ray spectrometry of *'Pb (Kunzendorf et al. 1998).
The gamma-ray spectrometry was performed using
well-type detector (GWL-series) with a sensitive
volume of 170 cm? and the well inside the germanium
crystal of 16 mm in diameter and 40 mm in depth. It
can accommodate small samples with the effective
volume up to 4 cm?®. The tightly closed sample
containers were usually stored for about 3 weeks to
allow the re-establishment of radioactive equilibrium
after possible radon escape from the sample material.
The calibration procedure of the gamma ray
spectrometric system used in this study is described
elsewhere (Gudelis et al. 2000). A number of naturally
occurring radioisotopes from the U and Th decay series,
as well as man-made radioisotopes, e.g., ¥’Cs, were
determined. The gamma-ray spectrometric system was
periodically calibrated against samples with known
21Pb and 'Y’Cs activities.

Using the thickness of wet sediment slices from
earlier cores and unsupported 2'°Pb activities, a
constant rate of supply (CRS) model (Goldberg 1963,
Robbins 1982) was applied to calculate mean
sedimentation rate and to construct the sediment
chronology for the past 200 or even more years of
sedimentation. The unsupported >'°Pb activity was
calculated by subtracting the supported activity, which
was estimated by statistical calculations of total 2!°Pb
activity distribution in the lower slices of cores, from
the total activity.

Using bulk sediment density, calculated as dry
weight of the slice material from cores of 1999
divided by its wet volume, and unsupported *'°Pb
activities, a constant rate of supply (CRS) model with
variations (Bollhéfer ef al. 1997) was applied to
evaluate recent sedimentation. The unsupported
219Ph activity was calculated by subtracting the
supported activity, which was estimated from *?°Ra
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or any other gamma-emitting decay product (*'*Pb
mainly), from the total activity. The 2!°Pb dating
results were compared and adjusted according to
the occurrence of known '“’Cs main markers
(Chernobyl, nuclear bomb testing, etc.).

Two analytical methods for trace elements
determination were applied. Bulk content of Ag, B, Ba,
Co, Cr, Cu, Ga, La, Li, Mn, Mo, Nb, Ni, P, Pb, Sc, Sn,
Sr, Ti, V, Y, Yb, Zn was determined by atomic emission
spectrometry (AES) method (DC-Arc Emission
Spectrometry) using DFS-13 spectrograph and MD-
1000 microdensitometer. Sub-samples for this type of
analysis were burned at a temperature of 450°C to
mineralise organic matter. Loss on ignition (LOI) was
calculated using sample weight before and after
mineralisation. X-Ray fluorescence (XRF) analysis was
applied to determine Zr and Rb amount in the
sediments. Detection limits of analyses were 30 ppm
for Ba, 10 ppm for Mn, Ti, and 5 — 0.03 ppm (most of
which is 1 ppm) for Ag, B, Co, Cr, Cu, Ga, La, Li, Mo,
Nb, Ni, Pb, Sc, Sn, Sr, V, Y, Yb and Zn. The results
were consistent with the reference values of
international standards OOKO 151, 152, 153,301, 302
and 303 for quality control. Analytical error comparing
with reference material was within 25% (Kadtnas
1998, Taraskevicius 1998, Taraskevicius & Zinkuté
1999).

Concentrations of trace elements detected by both
methods were also treated statistically. Each core was
studied separately. Means, maximum values, minimum
values and standard deviation of the trace elements
were calculated using Microsoft Office Package Excel.
To study the relationships between trace elements and
to classify the samples, the principal component analysis
(PCA) was carried out. Factor analysis, a well-known
statistical technique, offers a powerful tool to study
the interrelationship among the various components. It
compresses the total information content of the
multivariate data in terms of a few factors. Principal
component factor analysis was performed using SPSS
WIN software. PCA is a widely applied statistical
technique. It was used to clarify the correlations
between bioavailable metals and organic matter in the
Antarctic marine sediments (Ravanelli ez al. 1997), the
spatial distribution of heavy metals in the river sediments
(Chang et al. 1998), the identification of trace elements
anomalies and sources in various aquatic and non-
aquatic systems (Jimenez-Espinoza et al. 1993,
Baltakis 1993, Lass ef al. 1997, Sanchez et al. 1997,
Danielsson et al. 1999, Liua et al. 2003), the pollution
distribution in the river basins (Soares et al. 1999,
Loska & Wiechuta 2003), the pollution identification
in the urban soil (Zinkuté¢ 1998), the availability of
various binding fractions of Ni to plants (Wang et al.
1997), the distributions of benthic macroinvertebrate
community (Cosser 1989), and for the regional
geochemical exploration (Reiman et al. 2002,
Kadiinas et al. 1999).



RESULTS

The present paper combines relatively old unpublished
data on previously taken but not re-analyzed sediment
cores and new unpublished data on sediment cores from
the Eastern Baltic. Most sediment cores were only
examined by *'°Pb. In some of them only trace elements
were assessed. The core from station 21/01 was

subjected to most complex examination including
determinations of 2'°Pb, "*’Cs and trace element
analysis. Most of the cores were taken from deeper
sites (45—130 m sea depth), where various types of
mud are widespread (Fig. 2). The vertical distribution
of'the total and unsupported 2!°Pb in the sediment cores
from different parts of the East Baltic is given in
Figs. 3-7, Table 1.
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Fig. 2. The bottom sediments of the eastern Baltic Sea. (Winterhalter ef al. 1981, Repecka and Cato 1998). Situation around
sampling sites close to Lithuanian coast is shown in detail. Note: 1 - boulders, gravel, pebble, 2 -sand, 3 -coarse aleurite, 4
- fine aleuritic mud, 5 - aleuritic-pelitic mud, 6 - pelitic mud, 7 - relictic (till, clay) deposits.
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Many cores displayed regular decreasing of 2!°Pb
activity with increasing core profile depth to activity
corresponding to radioactive equilibrium with parent
radioisotope ?*Ra and changing in relatively narrow
interval. The lowest 2!°Pb activity close to the
sediment—water interface equalled to 60 Bg/kg, the
highest — to about 500 Bg/kg. The smallest depth of
sediments, where >!°Pb activity reached its radioactive
equilibrium with 2*Ra, was, in some cores, 45 cm,
the largest — about 40 cm. Analysis of distribution
patterns of the total 2'’Pb revealed that the activity of
supported 2'°Pb in sediments tends to range from 10 to

50 Bg/kg. It is evident that the highest activity of the
total 2!%Pb and especially unsupported 2!°Pb are
observed in the cores from the Gulf of Finland (stations
13/1998, 17/1998), where the input of terrigenous matter
is associated with the crystalline rocks of higher natural
radioactivity (Figs. 8-9). The smallest values of
mentioned indices were characteristic of cores from
the southerner parts of the east Baltic, where the input
of particulate matter is associated with sedimentary
rocks of low radioactivity (stations 33/1978, 07/1987).
Yet this trend was not characteristic of all cores. It
depends on the sorption capacity of particulate matter,
rates of sedimentation, dilution,

Station 1/1986
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Two cores were taken from the
mud area closest to the Lithuanian
coast (Fig. 10). They were sampled
(2 cm slices) and dated with high
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resolution. 2'Pb, 2?°Ra and its
daughter fission products and
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Fig. 4. Unsupported 2'°Pb versus depth for short gravity cores taken in 1987.

year — interval notwithstanding that
the cores were collected in different
years, were sliced into segments of
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method.
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elements was assessed in cores
(stations 21/01 and 21/05), taken from
the mud area closest to the Lithuanian
coast. The main primary statistical
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Table 1. Sedimentation rates estimated by lead-210 dating for short gravity cores.

Num- Station Latitude Longitude Sea Core Slice Prevailing Mean sedi-

bers in (original depth | length | number | lithology of mud | mentation

Figs 1-2 | number) (m) (cm) in core rate
(mm/a)

1 17/1978 56°42°N 19°52’E 130 40 4 Fine aleuritic 2.7

2 33/1978 54°45°N 19°16’E 96 60 6 Pelitic 4.3

3 01/1986 59°37°N 27°05°E 70 200 14 Aleuritic-pelitic 1.5

4 07/1986 59°50°N 24°50’E 68 40 6 Pelitic 1.3

5 02/1987 59°50°'N 25°38’E 77 24 6 Pelitic 1.2

6 05/1987 59°28°’N 23°00’E 90 21 7 Pelitic 1.2

7 07/1987 57°31°’N 20°34°E 145 20 6 Pelitic 1.2

8 10/1987 59°41°’N 26°38°E 70 30 7 Pelitic 2.5

9 12/1987 59°40°N 25°24°E 93 13 7 Pelitic 0.3

10 14/1987 59°31’N 24°23’E 60 35 7 Fine aleuritic 2.5

11 13/1988 59°44’'N 24°24°E 72 50 13 Aleuritic-pelitic 1.0

12 17/1988 59°54°'N 26°37°E 64 70 9 Aleuritic-pelitic 6.5

13 13/1992 59°39°N 26°26’E 45 15 5 Aleuritic-pelitic 1.5

14 16/1992 59°28°'N 23°57T’E 75 17 6 Fine aleuritic 2.0

15 21/01-99* | 55°34°520N | 20°30°400E | 68 41 20 Fine aleuritic 1.3

16 12/01-99* | 55°36°970N | 20°30°390E | 64 33 16 Fine aleuritic 1.0

* 210Ph dating results adjusted to '¥’Cs markers

data on trace element concentrations are summarised

in Table 2.

The average of element concentrations in the two

sediment cores shows the same rank
of elements sorted by their mean
concentrations:

Al>Ti>P>Ba>Zr>Mn>Rb>Sr>V>

>Cr>B>Zn>Ni>Pb>La>Li>Y>Cu>

>Nb>Sc>Ga>Co>(Sn>Mo)y>Yb>Ag,

Only Sn and Mo have different
ranks in two sediment cores. The
average values of elements in the
core from the station 21/01-99 are
slightly higher than in the core from
the station 21/05-99 (Fig. 11). This
is due to the grain-size composition
of sediments. The sediment core
21/01-99 has been collected from
the aleuritic—pelitic mud (Md=0.05-
0.001 mm) area while the core 21/
05-99 — from the fine-aleuritic
(Md=0.01-0.05 mm) mud area
(Fig. 2).

Variation coefficients of elements
rank as well and might reflect
different intensity of their
accumulation in sediment core profile
or contribution of various factors
(such as grain-size composition,
organic matter content,
sedimentation rates etc.). In
comparison, variation coefficients of
Ag>Pb>Mo>Zn>Y>Sc>La>P in the
core 21/01-99 and of
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other elements are lower than 0.30 and indicate more
even distribution in sediment core profiles.

A more complicated situation was revealed by
comparison of variation coefficients of elements
between two cores. Only Al, Ti, Zr, B, La, Y, Nb, Mo
and YD variation coefficients are slightly (in average
1.15 times) higher in the core 21/01-99 than in the
core 21/05-99 while other variation coefficients of
elements are higher (1.25 times on the average) in the
core 21/05-99. The factor analysis was applied for
finding out which factor influences such uneven
distribution of elements in the sediment cores.

DISCUSSION

Sedimentation rates estimated vary between 0.3-2
mm/a and tends to increase (3-7 mm/a) mainly after
1960. The similar values in adjacent areas are given
by H. Kunzendorf et al. (1998) (1-2 mm/a, sometimes
4-6 mm/a) and by A. Ilus (2000) (0.2-4 mm/a,
sometimes up to 29 mm/a). Recent sedimentation is

0,8
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mainly determined by basement topography, the flux
of material from rivers, coastal and submarine erosion
of old sediments, plankton production, and by the
hydrography (waves and currents) as the driving force
of sediment transport. The spatial distribution of bed
sediment types reflects the temporal integration of
the various environmental influences. The fine-grained
and light material (silt, clay, organic matter) is being
deposited under low energy conditions, which are in
the major basins. This context follows from the
available sediment maps of the Baltic Sea (Emelyanov
et al. 1994, Repecka and Cato 1998).

Only in 6 cores of the total 16 of lead-210 dated the
rates of sedimentation were higher or lower than the
dominant rate interval — 1-2 mm/year. Only two cores
taken close to the Lithuanian coast were examined with
high resolution. Nevertheless, the growth of the rates
of sedimentation after 1960 is notable. This might be
associated with intensified river erosion and seacoast
erosion (Zilinskas 2004) driven by climate (increased
frequency of extreme storms) and anthropogenic
changes in the region.

A more detailed chronological
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assessment of the mentioned cores
contributed to a more reliable
interpretation of trace elements data
based on PCA. By applying this
technique, one or more factors can
be extracted by analysing the data set
in greater detail. In our case, trace
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137Cs and total ?'°Pb versus calendar years for core 21/01 taken in 1999.

200
show similar geochemical affinity for
certain mineral phases. Trace
elements associated in groups or
associations can be distinguished.
They may be discharged from the
same sources or different sources but
confined to fine grained sediment
phase such as adsorption complexes,
organic matter, Fe- and Mn-
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oxyhydroxides and aluminosilicates
minerals. We grouped elements and
element associations according to
their occurrences in various mineral

and non-mineral phases: allothigenous
trace elements (Li, Ga, Sc, B, V, Cr,
Ni, Co, partly Cu) in main
allothigenous minerals such as

feldspars, mica, clay minerals;
allothigenous—accessory elements

(Ti, Zr, Nb, Y, Yb, La) related to
weathering resistant minerals such as
ilmenite, leucoxene, rutile, zircon;
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biogenous-technogenous elements
(Ag, Pb, Zn, Sn, Mo, partly Cu, Cr,
Ni); authigenous trace elements (Sr,
partly Ba, Mn, P) being mayor

| for gravity core,



Table 2. Statistical results on geochemical data for 21/01-99 and 21/05-99 sediment cores.

Core 21/01-99 Core 21/05-99
(n=27) (n=26)
Min Max Mean SD \ Min Max Mean SD \
LOI 4.99 17.18 11.43 347 0.30 4.38 12.87 7.87 2.85 0.36
Al 42 10.0 6.6 1.73 0.26 3.5 8.6 5.9 1.44 0.24
Ti 2400 5000 3537 664.6 0.19 2400 4300 3204 480.0 0.15
P 450 1200 652 198.3 0.30 350 1100 592 181.0 0.31
Ba 280 530 434 52.3 0.12 330 600 455 53.8 0.12
Zr 227 388 284 43.5 0.15 222 366 294 38.7 0.13
Mn 190 270 229 24.4 0.11 150 260 210 27.8 0.13
Rb 93 169 134 23.1 0.17 79 162 118 274 0.23
Sr 79 120 99 10.8 0.11 68 106 89 10.0 0.11
\% 66 125 99 18.2 0.18 54 135 85 21.3 0.25
Cr 64 105 82 12.5 0.15 50 94 73 13.0 0.18
B 52 105 78 13.8 0.18 51 92 69 11.8 0.17
n 30 145 66 28.8 0.44 25 110 49 23.0 0.47
Ni 21 54 39 8.4 0.22 16 52 33 9.9 0.30
Pb 11 74 34 17.3 0.52 7 60 25 15.9 0.63
La 16.5 44.0 26.8 8.22 0.31 16.0 34.0 24.2 5.62 0.23
Li 17.0 35.0 26.2 5.26 0.20 13.0 33.0 24.0 6.26 0.26
Y 13.0 45.0 22.0 7.66 0.35 9.6 33.0 19.2 5.73 0.30
Cu 11.0 27.0 19.0 3.51 0.19 11.0 38.0 18.3 5.86 0.32
Nb 9.4 21.0 13.9 3.14 0.23 6.4 19.0 13.8 2.67 0.19
Sc 7.0 22.0 12.8 4.16 0.33 5.0 21.0 11.0 3.80 0.35
Ga 7.2 13.5 10.1 1.71 0.17 4.7 13.0 8.9 2.17 0.24
Co 4.9 10.0 7.2 1.53 0.21 3.9 12.5 7.4 2.22 0.30
Sn 2.4 6.0 3.7 0.83 0.22 1.9 4.8 3.3 0.80 0.24
Mo 1.3 6.6 3.2 1.48 0.47 1.5 6.6 3.6 1.26 0.35
Yb 1.8 4.6 2.7 0.65 0.24 1.4 3.5 2.4 0.54 0.22
Ag 0.05 0.66 0.19 0.16 0.84 0.05 0.54 0.14 0.13 0.93

Note: LOI and Al concentrations in %, other elements in ppm; Min — minimum, Max — maximum, SD- standard deviation,
V — coefficient of variation; n — number of samples in each core.
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Fig. 10. Comparison of average values of element concentrations for two sediment cores. Note: Mean] — element average
value from core 21/01-99, Mean2 — average value from core 21/05-99. Colors: foxy —ratio more than 1.2, blue — between 1.2
and 1.1, yellow — between 1.1 and 1.0 and green — lower than 1.0.

87



Table 3. Principal component matrix' for 21/01-99 sediment core.

Nb. Factor 3, which

Elements Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 eXp !ams 19.2% of the total
variance, shows
Li 0.95 -0.20 0.12 -0.01 0.09 association of the elements
Co 0.95 0.04 0.01 0.11 -0.04 Pb, Ag, Zn, Sn, P, (partly
Ga 0.90 -0.17 0.04 0.25 0.00 Cr, Ni) but Nb and Mo are
Rb 0.85 0.33 0.12 0.07 0.26 antipodes to this group.
Ni 0.74 -0.05 0.42 0.44 0.13 Factor 4 explains 11.7% of
the variance and groups B,
\ 0.73 0.38 0.03 0.49 -0.01 (partly Ni, Cr, V, Zn), with
Zr -0.63 -0.19 -0.31 -0.24 -0.53 antlpodal Ba. Flnally’
Cr 0.59 0.36 0.44 0.44 0.14 Factor 5 explains 8.2% of
Al 0.18 0.94 -0.08 -0.09 0.03 variance and groups only
Yb -0.20 0.93 -0.04 -0.19 0.15 Sr, Cu, and an antipodal
La -0.09 0.92 -0.29 0.02 -0.04 element to this group is Zr.
Y -0.06 0.90 -0.04 -0.12 0.28 The three first factor
scores of all the samples
Sc 0.32 0.87 0.03 -0.19 0.16 for this core (station 21/01-
Ti -0.10 0.83 -0.24 0.12 -0.15 99) were calculated and
Mn 0.28 0.45 0.12 0.38 -0.35 illustrated in Flg 11.
Pb 0.24 -0.10 0.84 0.24 0.38 The Factor 1, loaded by
Ag 0.02 -0.15 0.84 0.29 0.36 Li (0.95), Co (0.95), Ga
Mo 0.28 -0.15 -0.83 0.25 0.16 (0.90), Rb (0.85), Ni (0.74),
Zn 034 20.06 0.79 0.40 0.07 X) g(s)';?;l){o va; lg?‘lslgs)(zofel;
Sn 0.40 0.14 0.78 0.37 0.15 >0) between 2% and 42
Nb -0.02 0.53 -0.69 0.29 -0.14 om in the sediment core.
P 0.00 -0.20 0.61 0.02 0.17 In the upper and lower
B 0.33 -0.02 0.13 0.88 0.10 parts of sediment core,
Ba -0.21 0.39 -0.19 -0.79 0.08 Factor 1 scores are low
Sr 0.09 0.18 0.28 -0.09 0.85 (i.e. below zero). The
Cu 0.55 0.07 0.19 0.12 0.59 elements grouped under
this factor form an
Eigenvalue 6.32 6.14 5.01 3.03 2.13 allotigenous association,
which is related to clay
% of var. 24.3 23.6 19.2 11.7 8.2 minerals, i.e. due to their
Cum. % var. 243 479 672 788 870 Sorption Or/and isomorphic

Note': Extraction method: principal component analysis; rotation method: varimax with

Kaiser normalization.

constituents or significant admixtures of authigenous
minerals (Mn in Mn-Fe oxyhydroxides and
rhodochrosite, P in phosphates, Sr, also partly Ba, in
carbonates) (Budavic¢ius 2003, Gregorauskiené,
Kadtinas 2000).

The principal component analysis extracted five
factors (Table 3) accounting for the 87% of the
variance in the 21/01-99-sediment core. All factor
loadings in the matrix were considered to be significant
and the elements were accordingly grouped under the
respective factors for the given sediment core. Factor
analysis highlights five groupings among the variables.
Factor 1 accounts for more than 24% of the variance.
Li, Co, Ga, Rb, Ni, V, Cr (partly Sn, Cu) are grouped
under this factor. Zr is an antipodal element to this group
and has negative loading on Factor 1. Factor 2,
describing 23.6% of the variance, has high factor
loadings for the elements Al, Yb, La, Y, Sc Ti, Mn and
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admixture. We can refer to
the typical elements (Li, Ga
and Rb) of clay minerals
(Degens 1967, Chester 1990, Briigmann 1992, Baltakis
1993, Ward ef al. 1995, Kadtinas 1998).

The Factor 2, loaded by Al (0.94), Yb (0.93), La
(0.92), Y (0.90), Sc (0.87), Ti (0.83), Nb (0.53), and
Mn (0.45), shows very changeable scores along the
sediment core but loadings of this factor are very close
to zero. Factor 2 groups elements related with
allotigenous minerals such as micas, clay minerals,
pyroxene and feldspar. Some of them (Al, Ti, Mn) are
major constituents of allotigenous minerals; other
elements (Yb, La, Nb) are isomorphic admixtures
(Degens 1967, Kadiinas 1998).

The Factor 3, which consists of Pb (0.84), Ag
(0.84), Zn (0.79), Sn (0.78) and P (0.61), has low
scores in the lower and high in the upper (over 30
cm) part of the sediment core. Based on radioisotope
dating this part of the sediment core could have been
formed during an anthropogenic epoch (last 100
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Fig. 11. Factor scores for geochemical data along sediment core 21/01-99.

years). In general, the third factor scores gradually
increase from the lower part to the upper part of the
sediment core. This tendency may be explained by
the contamination from various pollution sources and
in any case reflects evidence of contamination. The
last two factors (Factor 4 and Factor 5) are grouping
one or two elements and it is difficult to explain this
grouping.

Principal component analysis extracted four factors
(Table 4) accounting for 83.5% of the variance in the
sediment core from station 21/05-99. Factor 1 explains
45.1%, Factor 2 — 20.8%, Factor 3 — 10.1% and Factor
4 — 7.3% of the total variance. The factor analysis
shows that Factor 1 has the highest influence among
others factors. The elements Ni, Li, Sn, Ga, Cr, B, Pb,
Rb, Zn, V, Co, Sr, Cu, Ag, (partly Al, Sc) are grouped
under Factor 1 and Zr is their antipode. The factor
loadings are gradually increasing from the lower part
to the upper part of the sediment core (Fig. 12).

We may also distinguish two sediment intervals: the
lower one at the depths between 30 and 51 ¢cm with
factor loadings smaller then zero and the upper one at
depth 0-30 cm. Interpretation of Factor 1 can be
explained in two ways. Firstly, Li, Ga and partly Al, Sc
are grouped under this factor as these elements are
associated with clay minerals, particularly with clay
minerals crystal lattice (Degens 1967) while Rb, B, V
are related to a sorption complex. Secondly, the
presence of Pb, Zn and Ag may be related to
anthropogenic activity and reflect contamination
influence (Kadtinas 1998). So, associations related to
this factor are mixed and formed by natural allotigenous
and technogenous-biogenous elements.

Factor 2 groups La, Yb, Ti, Y, Al, Nb, Sc and Ba.
The factor scores are very changeable in the sediment
core. Low and high factor scores are change frequently.
Nevertheless, we may distinguish three sediment
column divisions: the first one is at the depths between
0 and 14 cm with dominating negative factor scores,
the second one at the depths between 14 and 46 cm
with prevailing positive scores and third the one —
between 46 and 51cm with low factor loadings.
Allotigenous minerals such as mica and clay minerals
can explain associations related to this factor. It refers
to Aland Sc, which are grouped under this factor. These
elements are forming crystal lattice or occur as
isomorphic admixtures (Degens 1967). Also
allotigenous minerals of sand-silt size (for example
feldspars, pyroxene) may have influence on grouping
of elements under this factor. First of all Ba is resident
in feldspar as an isomorphic admixture (Kadtnas
1998). Referring to the fact that Ba is grouped under
the factor 2 together with Al, we may conclude that
the content of minerals such as feldspars of sandy-
silty size increases in the middle part of the sediment
core. Also, Al groups under the Factor 2 but has high
loadings on the first factor as well. Al is one of the
major constituents in alumosilicates minerals such as
feldspars, micas, and clay minerals. Al loadings in
Factor 1 and Factor 2 indicate an increase of feldspar
content in the sediment.

Associations of the past two factors are small as
regards elements and it is difficult to interpret them.
Factor 3 includes only Mo and Mn, and in factor 4
the only element (P) has a high negative factor
loading.
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Table 4. Principal component matrix' for 21/05-99 sediment core.

during the past 120 years

and especially after 1960.
Elements Factor 1 Factor 2 Factor 3 Factor 4 High-resolution dated
Ni 0.96 0.12 0.03 0.06 cores were El‘lso analyseg
- or trace elements an
Li 0.92 -0.09 -0.04 0.23 based on multivariate
Sn 0.90 -0.13 -0.29 -0.10 statistical analysis this has
Ga 0.89 -0.14 0.07 0.08 led to determination and
Cr 0.88 -0.26 0.05 -0.14 classification of different
B 0.88 0.04 -0.03 -0.31 sources of elements in the
Pb 0.85 -0.06 -0.42 -0.12 sites under investigations.
Rb 0.85 0.29 0.04 0.40 The influence of clay
Zn 0.85 0.02 0.4 021 minerals —on element
v 0.84 042 0.06 012 occurrence in the stqdled
sediments was obvious.
Zr -0.84 -0.10 0.11 0.20 Some of the elements are
Co 0.83 0.26 0.17 0.26 formlng Sorption
Sr 0.80 0.20 -0.08 0.28 complexes of clay
Cu 0.76 -0.24 -0.41 -0.09 minerals; others act as an
Ag 0.64 -0.25 -0.58 -0.24 isomorphic admixture.
La 0.01 0.89 0.09 20.10 Factor analysis showed
Yb -0.03 0.86 0.06 026 that the anthropogenic load
X was more intensive in the
i -0.16 0.84 -0.03 -0.05 sediment core 21/05-99
Y 0.24 0.84 0.05 0.19 than in the core 21/01-99
Al 0.53 0.80 0.06 0.14 despite that both cores
Nb -0.24 0.64 0.06 -0.32 were located close to each
Sc 0.52 0.61 0.01 0.28 other. On the other hand,
Ba -0.34 0.54 0.42 0.15 the  trace  element
Mo 0.18 0.12 0.84 0.18 Coél,cemratgons . in
sediments from the core
Mn 0.21 0.29 0.83 -0.25 21/01-99 were more
P 0.03 -0.11 -0.08 -0.89 evenly distributed and
might be explained by a low
Eigenvalue 11.75 541 2.62 1.90 sedimentation rate or better
% of var., 45.1 20.8 10.1 7.3 sorting of sediments.
Cum. % var. 45.1 65.9 76.0 83.3 The data obtained by

Note': Extraction method: principal component analysis; rotation method: varimax with Kaiser

normalization.

CONCLUSIONS

Sediment cores collected from fourteen stations along
the eastern coast of the Baltic Sea were dated
radiometrically using natural >'°Pb; two additional cores
collected close to Lithuanian coast were dated using
natural ?'°Pb and artificial fallout radionuclide *’Cs.
For most sites the sedimentation rates were relatively
uniform — between 1.0 and 2.0 mm/year. In four sites
the sedimentation rates were relatively high — between
2.5 and 6.5 mm/year. One site showed low
sedimentation rate (0.3 mm/year). For most sites the
219Pb activity versus depth profile was regular, and in
consequence the 2!°Pb dates were relatively
unambiguous. Some sites, however, were notable for
irregularities in ?'°Pb activity versus depth profiles,
indicating significant variations in sedimentation rate

90

radioisotope dating and
trace elements methods
showed to be in sufficiently
good agreement with those
from the eastern part of the
Baltic Sea.
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