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Abstract. Tree rings provide palaeoclimatologists with well-dated, high-resolution proxy archive for recon-
structing past climate variability. New tree-ring data were developed from Scots pine trees from archipelagic, 
intermediate, and mainland sites in the Turku region, southwest Finland. The dominant climatic variable af-
fecting the growth of Scots pine trees was late-spring/summer precipitation. Tree growth responses to other 
variables representing climatic conditions outside the growing season were found to be more variable between 
the sites. Chronology variance and correlation between tree-ring series were the highest and correlation with 
the growing season precipitation was the strongest at the archipelagic site. Regression models were developed 
to evaluate the palaeoclimatic potential of dendrochronologic archives from the Turku region. These models 
explained ~ 30% of the variance in instrumentally observed precipitation. Climatic correlations and verifica-
tion statistics showed a reasonable reconstruction skill and suggest a potential for new tree-ring reconstructions 
of the past precipitation variability and hydroclimatic events in southwest Finland.
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INTRODUCTION

Palaeoclimatic research employs indirect (proxy) 
estimates of past climate, which are climate-sensitive 
series of geological, glaciological, or palaeontological 
records, as well as archaeological or historical archives 
(Bradley 1999). Tree-ring chronologies and associated 
paleo-environmental data provide the potential to as-
sess tree growth and analyse climatic determinants of 
growth variability. Furthermore, they allow to date his-
torical, archaeological, and subfossil tree-ring materi-
als, and to reconstruct past climate variability (Briffa et 
al. 2004; Haneca et al. 2009; St. George 2014).

The tree-ring data for this study were collected 
from a number of sites ranging from archipelagic to 
more mainland ones in and around the Turku region. 
There are several reasons why this study focused on 
these materials. First, the archaeological excavations 
conducted in Turku have uncovered a large number 
of wooden artefacts, including construction timber 

representing pinewood materials (Zetterberg 2003; 
Seppänen 2012), which may provide a previously un-
explored dendrochronological data source for palaeo-
climate research. Thus, analysis of the climate-growth 
relationships of living trees may also help understand 
the value of the archaeological tree-ring materials, i.e., 
the living tree data may serve as modern analogues of 
dendroclimatic correlations with instrumental climate 
data (Tegel et al. 2010; Helama et al. 2017).

Secondly, southwest Finland is a region where tree-
ring data of Scots pine trees have not been intensively 
studied. Previously, Karlsson (2009) reported that 
Scots pine tree-ring growth could be related to June 
precipitation and July temperature in the Satakunta re-
gion, ~100 km north of the present study. Moreover, 
Helama and Bartholin (2019) found a similar Scots 
pine response in southwestern Finland, in the Åland 
Islands. However, their investigation was based on tree 
rings from historical timber and climatic data from the 
18th century weather observations (Holopainen 2004, 
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2006) and, as a consequence, did not information on 
the recent climate-growth relationships. Henttonen et 
al. (2011) analysed Scots pine tree-ring data across 
Finland and Estonia but none of them were from the 
Turku region. More recent studies focused on tree-ring 
data of the same species from the sites northeast of 
the Turku region (Helama et al. 2014; Matisons et al. 
2021) and thus could not serve as modern updates of 
the archaeological tree-ring materials from Turku.

Thirdly, it has been recently shown that one of the 
earliest dendrochronological/dendroclimatic inves-
tigations in Europe was carried out by Johan Leche 
and took place in Turku during the 1750s (Norrgård, 
Helama 2021). Since then, the tree-ring data of near-
by forests have not been more intensively studied.

The purpose of this study is to develop a new Scots 
pine (Pinus sylvestris L.) tree-ring database for south-
west Finland (Fig. 1), to assess the growth variabil-
ity of this tree species and its climatic determinants 
in this region, and to demonstrate the value of these 
data for high-resolution palaeoclimatic research. The 
present work aims to contribute to the long tradition 
of tree-ring research in Finland at the very root of 
dendrochronology.

MATERIALS AND METHODS

Physical setting

Tree-ring data were collected from three sites 
in southwest Finland, along a 40-km-long transect 
near the Baltic Sea (Fig. 1). The site locations form a 
transect, which is oriented approximately from south-
west to northeast, from archipelagic conditions to the 
more continental ones. That is, the site in Parainen is 
located ~ 20 km southwest of the site in Turku, where-
as Aura site is ~ 20 km northeast of Turku (Fig. 1). The 
sites represent well-drained terrains, pine-dominated 
stands on coarse mineral soils and occasional bedrock 
outcrops, with a thin humus layer. This region belongs 
to the hemiboreal vegetation zone (Ahti et al. 1968). In 
this study, the Parainen, Turku, and Aura sites are re-
ferred to as archipelagic (ARCH), intermediate (INTM) 
and mainland (MNLD), respectively (Fig. 1B).

Tree-ring data

Tree-ring samples were extracted from Scots 
pine (Pinus sylvestris L.) trees under the licence of 
landowners, using Haglöf increment borer at a breast 
height (1.3 m) to achieve ring-width samples from 15 
trees at each site (one radius per tree). The fieldwork 
was carried out in October 2019 (ARCH and INTM 
sites) and November 2020 (CONT site). Ring widths 
were measured on the cores to the nearest 0.01 mm 
under the light microscope. Dendrochronological 

cross-dating was performed both visually and statisti-
cally (Holmes 1983).

Long-term growth variations attributable to bio-
logical factors were removed from the tree-ring series 
using a two-phase (i.e., double) detrending technique. 
First, the long-term trends pertaining to the tree ageing 
were eliminated from each tree-ring series. This was 
done by fitting either a modified negative exponential 
curve or a regression line with a negative or a zero 
slope (Fritts 1976) to the series of ring widths, and 
thus obtaining tree-ring indices as ratios between the 
measured growth values and the value of the curve. 
Second, a spline curve (Cook, Peters 1981) was fit-
ted to the series of ratio-based indices. The growth 
variations captured by this curve were removed from 
the data by dividing the ratio-based index value by 
the value of the spline curve. A previously suggested 
rigidity of the spline (see Cook et al. 1990a) was used 
to represent two-thirds (67%) of the length of each 
series (50% frequency response cut-off). Further-
more, the series of tree-ring indices from the second 
detrending were pre-whitened to remove the auto-
correlation from the series (Cook et al. 1990b). The 
cross-dated index values were averaged to produce 
mean site chronologies using a bi-weight robust mean 
(Mosteller, Tukey 1977; Cook et al. 1990b).

Tree-ring variability was characterized using the 
first-order autocorrelation, standard deviation, and the 
mean sensitivity (Fritts 1976) of the site chronologies. 
Moreover, the mean correlation among the series of 
individual tree-ring index series (Briffa, Jones 1990) 
and the expressed population signal (Wigley et al. 
1984) were used for characterising the chronologies. 
These statistics were calculated for the 1960–2019 
period that is common to climatic data (see below). 
Along with the variance explained by the first prin-
cipal component, these have been previously used to 
characterise the tree-ring data representing various 
types of settings (Carrer, Urbinati 2004).

Climatic data

The climatic variables that affected pine growth 
were revealed using bootstrapped response function 
analyses. This method produces coefficients (com-
puted between the tree-ring chronology and the series 
of monthly temperature and precipitation variables) 
as multivariate estimates (Biondi, Waikul 2004). The 
series of monthly climatic data were linearly detrend-
ed before conducting dendroclimatic analyses by fit-
ting a regression line to each monthly record of tem-
perature and precipitation values and then extracting 
the trendline from the series by subtraction. Response 
functions were computed separately for the pre-whit-
ened ARCH, INTM and MNLD chronologies. The 
climatic data for each tree-ring site were obtained 
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from the spatial model built using the monthly mean 
temperatures and monthly precipitation sums (total 
amount of rain) collected by the Finnish Meteorolog-
ical Institute, and subjected to kriging interpolation 
to account for the influence of topography and water 
bodies, since 1960 (Aalto et al. 2013, 2016).

Longer instrumental climate records were avail-
able from the Turku meteorological station (Tuomen-
virta et al. 2001). Monthly precipitation sums are 
available from this station since 1909 but the record 
appears discontinuous over the 21st century. Here, 
the monthly precipitation sums were updated by the 
corresponding values obtained from the spatial model 
(Aalto et al. 2013, 2016) from 2000 onwards. These 
data were used to test the temporal stability of the 
relationship between proxy (i.e. tree-ring) data and 
climate. Linear regression was computed for the cali-
bration period, which was the same as the one used 
for the original climatic correlations (1960–2019). 
Dendrochronological and climate data (1909–1959) 
withheld from the calibration were used to assess 

the veracity of the climate/proxy relationship with 
independent data (verification period; Fritts 1976). 
Pearson correlations between the observed and recon-
structed values were calculated over the calibration 
and verification periods. Reduction of error (RE) and 
coefficient of efficiency (CE) statistics were calcu-
lated over the verification period. Positive RE and CE 
were used to indicate real skill in the reconstruction 
(Fritts 1976; Briffa et al. 1988). All the dendroclimat-
ic analyses described in this section were carried out 
using pre-whitened tree-ring data.

RESULTS

Tree-ring chronologies

The ARCH, INTM, and MNLD chronologies 
cover the periods 1688–2019, 1815–2019 and 1761–
2020, respectively. Tree-ring width chronologies 
from the archipelagic (ARCH), intermediate (INTM) 
and mainland (MNLD) sites portrayed growth vari-

Fig. 1 Map of Finland, with the study region indicated by a rectangle, and location of the City of Turku indicated by a 
star (a). The inlet (b) indicates locations of archipelagic (ARCH) (c), intermediate (INTM) (d), and mainland (MNLD) 
(e) sites in southwest Finland
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ations on different scales varying from inter-annual 
to longer ones (Fig. 2a–c). Both visual comparison 
and Pearson correlations between the chronologies 
showed fairly similar pine growth variability, al-
though dissimilarities there appeared as well. That 
is, the correlations calculated (1960–2019) between 
the MNLD and INTM chronologies, and between the 
MNLD and ARCH chronologies, were r = 0.283 and 
r = 0.294, respectively. For pre-whitened data, the re-
spective correlations were r = 0.354 and r = 0.315. 
By contrast, the correlation between the ARCH and 

INTM chronologies was as high as r = 0.565 (r = 
0.548 for pre-whitened data). These correlations sug-
gest that the connections between the chronologies 
were not so much dependent on the distance between 
the sites as on their distance to the Baltic Sea.

Tree-ring statistics

All the statistics except the first-order autocorrela-
tion showed a change from the ARCH site towards the 
INTM/CONT sites (Fig. 3). These changes, in mean 
sensitivity and standard deviation, demonstrated am-
pler growth fluctuations at the ARCH site, in com-
parison to INTM and MNLD sites. Correlations be-
tween the trees and the variance explained by the first 
principal component showed that similarity in growth 
patterns between individual trees was the highest at 
the ARCH site and the lowest at the MNLD one. As a 
result, the expressed population signal (EPS) reached 
the highest score at the ARCH site and the lowest one 
at the MNLD site. This statistic reached the EPS > 
0.85 criterion for the ARCH and INTM sites, whereas 
for the MNLD site the EPS-statistic remained slightly 
below that threshold (see Fig. 3). This finding implies 
that the sample size of fifteen trees may remain sub-
optimal for that site and that at least irregular results 
(if any) obtained for the MNLD site ought to be treat-
ed with caution.

Climatic connections

Correlations with climatic records indicated that 
growth variability was predominantly related to vari-
ability in precipitation parameters (Fig. 4a–c). The 
climate-growth correlations calculated for the 60-
year period (1960–2019) showed that at the ARCH 
site, pine growth responded positively to May and 
June precipitation. Pines from other sites showed 
similar responses to June precipitation. In addition, 
they also showed a positive response to July precipi-
tation (INTM) and March temperature (INTM), and a 
negative response to October (MNLD) precipitation 
(previous to the growth year). That is, there was a 
high similarity found between the significant factors 
for the three sites, which suggested that tree growth 
was predominantly controlled by summer precipita-
tion. This connection was the strongest in the case of 
ARCH chronology with the response coefficient of 
~ 0.4 to June precipitation, compared to INTM and 
MNLD chronologies that showed coefficients of ~ 
0.3 to that variable. These findings were based on sta-
tistically significant correlations (p < 0.05) between 
the site chronologies and monthly climatic records. 
Interestingly, the ARCH chronology showed statisti-
cally significant connections only to growing season 
precipitation.

Fig. 2 Archipelagic, intermediate, and mainland (ARCH, 
INTM and MNLD) site chronologies produced using the 
double detrending (IND) and pre-whitening (RSD). The 
chronologies are shown since 1960 when they were analy-
sed with climatic data
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Calibration and verification

Tree-ring data were used to reconstruct the late 
spring-summer (May–July) precipitation variability 
(Fig. 5). Alternative models were derived separately 
from simple linear regression based on the median 
(MD) and the first principal component (PC#1) of the 

Fig. 3 Variation in chronology statistics (1960–2019) 
among sites. Comparison includes the first-order autocor-
relation (AR1), mean sensitivity (MS), standard devia-
tion (SD), variance explained by the first principal com-
ponent (PC1%), correlation between the trees (rBT), and 
the expressed population signal (ESP) calculated for the 
archipelagic (ARCH), intermediate (INTM) and mainland 
(MNLD) chronologies produced using the double detrend-
ing (filled symbols) and pre-whitening (open symbols).

Fig. 4 Bootstrapped response analysis showing relation-
ships between tree-ring chronologies and monthly mean 
temperatures and monthly precipitation sums (1960–
2019). Chronologies of archipelagic (ARCH), intermediate 
(INTM) and mainland (MNLD) sites were separately com-
pared to weather variables of the previous (small letters) 
and concurrent year (capital letters). Statistically signifi-
cant relationships (0.05 level) are indicated by an asterisk
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site chronologies and from multiple linear regression 
(MR) based on the three site chronologies. Correla-
tions between the observed and reconstructed precipi-
tation data vary around r ~ 0.55 during the calibration 
period (1960–2019). Very similar correlations were 
obtained for the verification period (1909–1959) 
(Table 1). These correlations were all statistically 
significant (p < 0.001).

Table 1 Calibration and verification statistics for the 
May–June precipitation reconstructions. Pearson corre-
lations were calculated over the calibration period (rcalib) 
(1960–2019), verification period (rverif) (1909–1959) and 
the full period (1909–2019) (rfull). Reduction of error (RE) 
and coefficient of efficiency (CE) statistics were computed 
over the verification period. Reconstructions were derived 
separately from simple linear regression based on the me-
dian (MD) and the first principal component (PC#1) of the 
site chronologies and from multiple linear regression (MR) 
based on chronologies at the three sites. All correlations 
are significant at p < 0.001 level

  rcalib rverif RE CE rfull

MD 0.55 0.54 0.25 0.23 0.54
PC#1 0.54 0.57 0.26 0.24 0.54
MR 0.54 0.55 0.24 0.22 0.53

Moreover, the reduction of error and coefficient of 
efficiency statistics were positive for all the sites, indi-
cating real skill in the reconstruction. That is, the data 
withheld from calibrations confirm the relationship 
that exists between the tree-ring and climate variability 
over the period originally used to highlight the climatic 
correlations (Fig. 4). Finally, the calibrations over the 
full period (1909–2019) resulted in reconstructions 
correlating with precipitation with r = 0.53–0.54, thus 
demonstrating that the models explain ca. 30% of the 
variance in instrumentally observed precipitation. As a 
further test of validity, the median of the site chronolo-
gies correlated with r = 0.64 with a historical May–
June precipitation record (1750–1800) as previously 
published for Turku (Holopainen 2004). These results 
demonstrate the palaeoclimatic potential of Scots pine 
tree-ring chronologies from the Turku region and show 
that similar archives provide palaeoclimatologists with 
a high-resolution proxy data for the reconstruction of 
the past precipitation variability.

DISCUSSION AND CONCLUSIONS

Tree-ring statistics revealed a change in chronol-
ogy variance, common growth signal, and climatic 
response along a transect from archipelagic site con-
ditions to the more mainland ones. A similar gradi-
ent of change in tree-ring statistics from northeast 
to southeast Finland was demonstrated previously 
(Lindholm et al. 2000; Helama et al. 2005). In that 

Fig. 5 Observed and reconstructed May–June precipita-
tion histories (1909–2019). Reconstructions were derived 
separately from simple linear regression based on the me-
dian (MD) and the first principal component (PC#1) of the 
site chronologies and from multiple linear regression (MR) 
based on the three site chronologies. Observed (light blue 
line) and reconstructed (dark blue line) precipitation series 
are shown over the calibration (1960–2019) and verifica-
tion periods (1909–1959). Five driest events based on in-
strumental data (1940, 1941, 1959, 1971, and 1999) are 
indicated by arrows

case, which generally follows the classic framework 
of dendrochronological characterisation along bio-
geographical gradients (Fritts et al. 1965), higher cor-
relations between individual tree-ring series in the 
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north were suggested to yield larger variance in the 
northern chronologies where the climatic control on 
pine growth was also strong. In southwest Finland, 
the strongest connection to summer (June) precipita-
tion was evident in the case of the ARCH site (Fig. 4), 
where estimates of chronology variance and those of 
individual series similarity were higher than at the 
INTM and MNLD sites (Fig. 3). Collectively, these 
results demonstrate an increasing sensitivity to hy-
droclimatic factors, especially to June precipitation, 
towards the southwest (i.e., archipelagic site condi-
tions) in the region.

Scots pine responses to late spring-summer pre-
cipitation, similar to those determined in this study, 
were previously reported from sites in Helsinki 
(Helama et al. 2012), southeast Finland (Lindholm 
et al. 2000; Helama et al. 2005), the Satakunta and 
Tavastia Proper regions (Karlsson 2009; Helama et 
al. 2014), the Åland Islands in south-western Fin-
land (Helama, Bartholin 2019) and more generally 
in southern Finland (Henttonen 1984; Henttonen et 
al. 2011). Moreover, analysis of the network of tree-
ring chronologies (Seftigen et al. 2015) also revealed 
similar responses of Scots pines from various sites 
and regions in Sweden (Linderholm, Molin 2005; 
Jönsson, Nilsson 2009; Seftigen et al. 2013). The 
above-mentioned network also contained the tree-
ring chronology data of Norway spruce (Picea abies 
L.), and pedunculate oak (Quercus robur L.), the den-
drochronological data of which were also shown to 
correlate with summer precipitation at sites around 
southern Finland and western Estonia (Mäkinen et 
al. 2001; Läänelaid et al. 2008, 2015; Helama et al. 
2009a, 2014, 2016a, b, 2018; Läänelaid, Eckstein 
2012; Sohar  et al. 2014a, b). Moreover, Tilia spp. 
(linden) chronology was recently found to positively 
correlate with June precipitation in Helsinki (Helama 
et al. 2020). It appears that the signal of the growing 
season precipitation could be regarded as a common 
factor controlling tree growth in various site condi-
tions around the Gulf of Finland and the northern 
Baltic Sea continental margin proper, but its strength 
may vary, as further demonstrated for the sites exam-
ined in this study.

Correlations of tree-ring chronologies with other 
climatic variables were found to be more variable. It 
was determined that at the INTM site, the tree-ring 
chronology was linked positively with the late-winter 
(March) temperature. Similar climatic signals were 
previously found in Scots pine tree-ring data with 
positive correlations with March temperatures in Es-
tonia (Läänelaid et al. 2009), with February–March 
temperatures in Novgorod (NW Russia) (Helama et 
al. 2017), and with February, March, and April tem-
peratures in Lithuania (Juknys et al. 2002) and Po-
land (Koprowski et al. 2012).

Generally, these findings indicate a common cli-
matic signal in tree-ring chronologies around the Bal-
tic Sea region (Läänelaid et al. 2012), which is also 
represented by the tree-ring variability in the south-
west Finland. At the MNLD site, the pine growth 
showed a negative correlation with the late-autumn 
precipitation (previous October to the growth year). 
Previously, the Scots pine growth was negatively as-
sociated with snow depth at the beginning of dorman-
cy (November) in the regional tree-ring chronology 
representing sites around the southern part of Finland 
(Helama et al. 2013). The seasonal timing of the late-
autumn (October) precipitation signal at the sites of 
this study appears to predate, however, the accumu-
lation of snow covers in the study region (based on 
the estimates of Aalto et al. (2016) for the 2016–2020 
period), which suggests that the mechanisms control-
ling the responses are dissimilar. Collectively, these 
results demonstrate the relative importance of climat-
ic conditions outside the growing season for Scots 
pine in the study region.

Importantly, the findings of this study offer im-
plications for palaeoclimate research. In the City of 
Turku, archaeological excavations have resulted in 
numerous finds of wooden artefacts, including con-
struction timber. A particularly rich source of such 
materials for tree-ring studies is likely to originate 
from urban medieval deposits (e.g., Zetterberg 2003; 
Seppänen 2012). Dead wood materials provide se-
quences of tree rings for a long local/regional chro-
nology to be used for further dating purposes. The 
resulting tree-ring data provide an annually resolved, 
well-dated palaeoclimatic resource to be used for es-
timations and reconstructions of past climate varia-
bility in the same region. Calibration and verification 
statistics shown here (Table 1) suggest a potential for 
new hydroclimatic reconstructions sensitive to late 
spring-summer precipitation surpluses and droughts. 
This would corroborate previous studies where Scots 
pine tree rings were used as proxy data for recon-
structing the growing season precipitation variability 
elsewhere at the sites around the Gulf of Finland and 
the northern Baltic Sea region (Helama, Lindholm 
2003; Linderholm, Molin 2005; Helama et al. 2009b; 
Jönsson, Nilsson 2009; Seftigen et al. 2013, 2015, 
2017). Such reconstructions can potentially provide 
a late Holocene context for the recent and forecasted 
precipitation trends in southwest Finland (Ylhäisi et 
al. 2010).
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