

BALTICA Volume 37 Number 2 December 2024

An International Journal on Geosciences of the circum-Baltic States

__

https://baltica.gamtc.lt/en

Supporting Online Material for

HYDRAULIC CONDUCTIVITY DETERMINATION OF LITHUANIAN SOILS USING

MACHINE LEARNING

V. Samalavičius, E. K.-M. Vanhala, I. Lekstutytė, S. Gadeikienė, S. Gadeikis, G. Žaržojus

Published online 9 December 2024, Baltica vol. 37 no. 2

DOI: https://doi.org/10.5200/baltica.2024.2.5

PDF file includes text

https://baltica.gamtc.lt/en

Hyperparameters used for machine learning algorithms’ boosting

The Random Forest Regressor (RFR) was tested with several hyperparameters to evaluate its

performance. The n_estimators parameter, which defines the number of trees in the forest, was

set to [50, 100, 200]. This variation helps in understanding the effect of the number of trees on the

model's accuracy and overfitting tendency. The max_depth parameter, which determines the

maximum depth of each tree, was tested with values [None, 10, 20, 30]. This helps in controlling

the complexity of the model and preventing overfitting. Additionally, the min_samples_split

parameter, indicating the minimum number of samples required to split an internal node, was

tested with values [2, 5, 10]. The min_samples_leaf parameter, which specifies the minimum

number of samples required to be at a leaf node, was also varied with values [1, 2, 4] to ensure a

balanced trade-off between bias and variance.

For the Gradient Boosting Regressor (GBR), a comprehensive set of hyperparameters was tested.

The n_estimators parameter, representing the number of boosting stages, was evaluated with

[50, 100, 200] stages. This helps in understanding the impact of the number of boosting iterations

on the model’s performance. The learning_rate parameter, which controls the contribution of

each tree, was set to [0.01, 0.05, 0.1] to assess its effect on convergence and accuracy. The

max_depth of the individual regression estimators was tested with values [3, 5, 7, 9] to balance

model complexity and overfitting. The min_samples_split and min_samples_leaf parameters

were tested with values [2, 5, 10], and [1, 2, 4], respectively, to fine-tune the model's sensitivity to

data variation. The subsample parameter, defining the fraction of samples used for fitting the base

learners, was set to [0.6, 0.8, 1.0] to study its effect on the model's robustness and variance.

The K-Nearest Neighbors Regressor (KNR) was evaluated using a range of hyperparameters to

determine its optimal configuration. The n_neighbors parameter, which specifies the number of

neighbors to consider, was varied from [1 to 15] to analyze its impact on model precision and

sensitivity. The algorithm parameter, which dictates the algorithm used to compute the nearest

neighbors, was tested with ['auto', 'ball_tree', 'kd_tree', 'brute'] to compare their computational

efficiency and accuracy. The leaf_size parameter, affecting the leaf size passed to tree-based

algorithms, was set to [10, 20, 30, 40, 50]. This helps in balancing the speed and accuracy of the

model. The p parameter, which defines the power parameter for the Minkowski metric, was tested

with values [1, 2] to understand its influence on distance calculation.

The Multi-Layer Perceptron Regressor (MLPR) was fine-tuned using various hyperparameters to

enhance its performance. The hidden_layer_sizes parameter, specifying the number of neurons

in the hidden layers, was set to [(50,), (100,), (50, 50), (100, 50), (100, 100)]. This allows the model

to learn different levels of abstraction in the data. The activation function for the hidden layers

was tested with ['identity', 'logistic', 'tanh', 'relu'] to evaluate their effect on non-linearity and

learning capability. The solver parameter, which determines the algorithm for weight

optimization, was tested with ['lbfgs', 'sgd', 'adam'] to compare their convergence speed and

reliability. The alpha parameter, representing the L2 penalty term for regularization, was varied

with values [0.0001, 0.001, 0.01] to prevent overfitting and improve generalization.

For the Elastic Net (EN) algorithm, hyperparameter tuning was performed to optimize its

performance. The alpha parameter, which controls the regularization strength, was tested with

values [0.1, 0.5, 1.0, 2.0, 5.0, 10.0]. This helps in balancing the trade-off between bias and

variance. The l1_ratio parameter, defining the mix ratio between l1 and l2 penalties, was varied

with values [0.1, 0.3, 0.5, 0.7, 0.9, 1.0] to understand its effect on sparsity and regularization. The

max_iter parameter, indicating the maximum number of iterations for optimization, was set to

[1000, 2000, 3000, 5000] to ensure sufficient convergence. The tol parameter, representing the

tolerance for optimization, was tested with values [1e-4, 1e-3, 1e-2] to achieve the desired

precision. The selection parameter, which determines if a random coefficient is updated every

iteration, was tested with ['cyclic', 'random'] to compare their impact on optimization speed and

performance.

The Huber Regressor (HR) was fine-tuned using a set of hyperparameters to enhance its

robustness. The epsilon parameter, which determines the threshold for considering samples as

outliers, was tested with values [1.0, 1.5, 2.0]. This helps in balancing the sensitivity to outliers

and model robustness. The alpha parameter, representing the regularization strength, was varied

with values [0.0001, 0.001, 0.01] to control overfitting. The max_iter parameter, indicating the

maximum number of iterations for optimization, was set to [100, 200, 300] to ensure adequate

convergence. The tol parameter, defining the tolerance for optimization, was tested with values

[1e-4, 1e-3, 1e-2] to achieve the desired level of accuracy.

