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Hyperparameters used for machine learning algorithms’ boosting 

The Random Forest Regressor (RFR) was tested with several hyperparameters to evaluate its 

performance. The n_estimators parameter, which defines the number of trees in the forest, was 

set to [50, 100, 200]. This variation helps in understanding the effect of the number of trees on the 

model's accuracy and overfitting tendency. The max_depth parameter, which determines the 

maximum depth of each tree, was tested with values [None, 10, 20, 30]. This helps in controlling 

the complexity of the model and preventing overfitting. Additionally, the min_samples_split 

parameter, indicating the minimum number of samples required to split an internal node, was 

tested with values [2, 5, 10]. The min_samples_leaf parameter, which specifies the minimum 

number of samples required to be at a leaf node, was also varied with values [1, 2, 4] to ensure a 

balanced trade-off between bias and variance. 

For the Gradient Boosting Regressor (GBR), a comprehensive set of hyperparameters was tested. 

The n_estimators parameter, representing the number of boosting stages, was evaluated with 

[50, 100, 200] stages. This helps in understanding the impact of the number of boosting iterations 

on the model’s performance. The learning_rate parameter, which controls the contribution of 

each tree, was set to [0.01, 0.05, 0.1] to assess its effect on convergence and accuracy. The 

max_depth of the individual regression estimators was tested with values [3, 5, 7, 9] to balance 

model complexity and overfitting. The min_samples_split and min_samples_leaf parameters 

were tested with values [2, 5, 10], and [1, 2, 4], respectively, to fine-tune the model's sensitivity to 

data variation. The subsample parameter, defining the fraction of samples used for fitting the base 

learners, was set to [0.6, 0.8, 1.0] to study its effect on the model's robustness and variance. 

The K-Nearest Neighbors Regressor (KNR) was evaluated using a range of hyperparameters to 

determine its optimal configuration. The n_neighbors parameter, which specifies the number of 

neighbors to consider, was varied from [1 to 15] to analyze its impact on model precision and 

sensitivity. The algorithm parameter, which dictates the algorithm used to compute the nearest 

neighbors, was tested with ['auto', 'ball_tree', 'kd_tree', 'brute'] to compare their computational 

efficiency and accuracy. The leaf_size parameter, affecting the leaf size passed to tree-based 

algorithms, was set to [10, 20, 30, 40, 50]. This helps in balancing the speed and accuracy of the 

model. The p parameter, which defines the power parameter for the Minkowski metric, was tested 

with values [1, 2] to understand its influence on distance calculation. 

The Multi-Layer Perceptron Regressor (MLPR) was fine-tuned using various hyperparameters to 

enhance its performance. The hidden_layer_sizes parameter, specifying the number of neurons 

in the hidden layers, was set to [(50,), (100,), (50, 50), (100, 50), (100, 100)]. This allows the model 

to learn different levels of abstraction in the data. The activation function for the hidden layers 

was tested with ['identity', 'logistic', 'tanh', 'relu'] to evaluate their effect on non-linearity and 

learning capability. The solver parameter, which determines the algorithm for weight 

optimization, was tested with ['lbfgs', 'sgd', 'adam'] to compare their convergence speed and 

reliability. The alpha parameter, representing the L2 penalty term for regularization, was varied 

with values [0.0001, 0.001, 0.01] to prevent overfitting and improve generalization. 

For the Elastic Net (EN) algorithm, hyperparameter tuning was performed to optimize its 

performance. The alpha parameter, which controls the regularization strength, was tested with 



values [0.1, 0.5, 1.0, 2.0, 5.0, 10.0]. This helps in balancing the trade-off between bias and 

variance. The l1_ratio parameter, defining the mix ratio between l1 and l2 penalties, was varied 

with values [0.1, 0.3, 0.5, 0.7, 0.9, 1.0] to understand its effect on sparsity and regularization. The 

max_iter parameter, indicating the maximum number of iterations for optimization, was set to 

[1000, 2000, 3000, 5000] to ensure sufficient convergence. The tol parameter, representing the 

tolerance for optimization, was tested with values [1e-4, 1e-3, 1e-2] to achieve the desired 

precision. The selection parameter, which determines if a random coefficient is updated every 

iteration, was tested with ['cyclic', 'random'] to compare their impact on optimization speed and 

performance. 

The Huber Regressor (HR) was fine-tuned using a set of hyperparameters to enhance its 

robustness. The epsilon parameter, which determines the threshold for considering samples as 

outliers, was tested with values [1.0, 1.5, 2.0]. This helps in balancing the sensitivity to outliers 

and model robustness. The alpha parameter, representing the regularization strength, was varied 

with values [0.0001, 0.001, 0.01] to control overfitting. The max_iter parameter, indicating the 

maximum number of iterations for optimization, was set to [100, 200, 300] to ensure adequate 

convergence. The tol parameter, defining the tolerance for optimization, was tested with values 

[1e-4, 1e-3, 1e-2] to achieve the desired level of accuracy. 

 


